These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9533624)

  • 21. The folding transition state of the cold shock protein is strongly polarized.
    Garcia-Mira MM; Boehringer D; Schmid FX
    J Mol Biol; 2004 Jun; 339(3):555-69. PubMed ID: 15147842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Major cold shock proteins, CspA from Escherichia coli and CspB from Bacillus subtilis, interact differently with single-stranded DNA templates.
    Lopez MM; Makhatadze GI
    Biochim Biophys Acta; 2000 Jun; 1479(1-2):196-202. PubMed ID: 10862969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The major cold shock protein of Bacillus subtilis CspB binds with high affinity to the ATTGG- and CCAAT sequences in single stranded oligonucleotides.
    Graumann P; Marahiel MA
    FEBS Lett; 1994 Jan; 338(2):157-60. PubMed ID: 8307174
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cold shock proteins CspB and CspC are major stationary-phase-induced proteins in Bacillus subtilis.
    Graumann PL; Marahiel MA
    Arch Microbiol; 1999 Jan; 171(2):135-8. PubMed ID: 9914312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of Hydrostatic Pressure on the Thermodynamics of CspB-Bs Interactions with the ssDNA Template.
    Avagyan S; Makhatadze GI
    Biochemistry; 2021 Oct; 60(41):3086-3097. PubMed ID: 34613715
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactions of the cold shock protein CspB from Bacillus subtilis with single-stranded DNA. Importance of the T base content and position within the template.
    Lopez MM; Yutani K; Makhatadze GI
    J Biol Chem; 2001 May; 276(18):15511-8. PubMed ID: 11278683
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation of amyloid fibrils by peptides derived from the bacterial cold shock protein CspB.
    Gross M; Wilkins DK; Pitkeathly MC; Chung EW; Higham C; Clark A; Dobson CM
    Protein Sci; 1999 Jun; 8(6):1350-7. PubMed ID: 10386885
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diffusional barrier crossing in a two-state protein folding reaction.
    Jacob M; Geeves M; Holtermann G; Schmid FX
    Nat Struct Biol; 1999 Oct; 6(10):923-6. PubMed ID: 10504725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of the chain termini for the folding transition state of the cold shock protein.
    Perl D; Holtermann G; Schmid FX
    Biochemistry; 2001 Dec; 40(51):15501-11. PubMed ID: 11747425
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Localization of cold shock proteins to cytosolic spaces surrounding nucleoids in Bacillus subtilis depends on active transcription.
    Weber MH; Volkov AV; Fricke I; Marahiel MA; Graumann PL
    J Bacteriol; 2001 Nov; 183(21):6435-43. PubMed ID: 11591689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In-vitro selection of highly stabilized protein variants with optimized surface.
    Martin A; Sieber V; Schmid FX
    J Mol Biol; 2001 Jun; 309(3):717-26. PubMed ID: 11397091
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of the stability of a fused protein and its distance to the amyloidogenic segment on fibril formation.
    Buttstedt A; Winter R; Sackewitz M; Hause G; Schmid FX; Schwarz E
    PLoS One; 2010 Nov; 5(11):e15436. PubMed ID: 21124848
    [TBL] [Abstract][Full Text] [Related]  

  • 33. pH and Charged Mutations Modulate Cold Shock Protein Folding and Stability: A Constant pH Monte Carlo Study.
    de Oliveira VM; Caetano DLZ; da Silva FB; Mouro PR; de Oliveira AB; de Carvalho SJ; Leite VBP
    J Chem Theory Comput; 2020 Jan; 16(1):765-772. PubMed ID: 31756296
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrostatic stabilization of a thermophilic cold shock protein.
    Perl D; Schmid FX
    J Mol Biol; 2001 Oct; 313(2):343-57. PubMed ID: 11800561
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of context on the folding of β-hairpins.
    Jonsson AL; Daggett V
    J Struct Biol; 2011 Nov; 176(2):143-50. PubMed ID: 21843644
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recognition of T-rich single-stranded DNA by the cold shock protein Bs-CspB in solution.
    Zeeb M; Max KE; Weininger U; Löw C; Sticht H; Balbach J
    Nucleic Acids Res; 2006; 34(16):4561-71. PubMed ID: 16956971
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diffusion control in an elementary protein folding reaction.
    Jacob M; Schindler T; Balbach J; Schmid FX
    Proc Natl Acad Sci U S A; 1997 May; 94(11):5622-7. PubMed ID: 9159122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RNA and DNA Binding Epitopes of the Cold Shock Protein TmCsp from the Hyperthermophile Thermotoga maritima.
    von König K; Kachel N; Kalbitzer HR; Kremer W
    Protein J; 2020 Oct; 39(5):487-500. PubMed ID: 33094361
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overproduction, crystallization, and preliminary X-ray diffraction studies of the major cold shock protein from Bacillus subtilis, CspB.
    Schindelin H; Herrler M; Willimsky G; Marahiel MA; Heinemann U
    Proteins; 1992 Sep; 14(1):120-4. PubMed ID: 1409560
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mapping of the Bacillus subtilis cspB gene and cloning of its homologs in thermophilic, mesophilic and psychrotrophic bacilli.
    Schröder K; Zuber P; Willimsky G; Wagner B; Marahiel MA
    Gene; 1993 Dec; 136(1-2):277-80. PubMed ID: 8294017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.