BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 9533651)

  • 21. Modulating nasal mucosal permeation using metabolic saturation and enzyme inhibition techniques.
    Dhamankar V; Donovan MD
    J Pharm Pharmacol; 2017 Sep; 69(9):1075-1083. PubMed ID: 28542812
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relationship between polypeptide transcytosis and lymphoid tissue in the rabbit nasal mucosa.
    Cremaschi D; Ghirardelli R; Porta C
    Biochim Biophys Acta; 1998 Mar; 1369(2):287-94. PubMed ID: 9518653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of key components in the irreversibility of salmon calcitonin binding to calcitonin receptors.
    Hilton JM; Dowton M; Houssami S; Sexton PM
    J Endocrinol; 2000 Jul; 166(1):213-26. PubMed ID: 10856900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Divergent structural requirements exist for calcitonin receptor binding specificity and adenylate cyclase activation.
    Houssami S; Findlay DM; Brady CL; Martin TJ; Epand RM; Moore EE; Murayama E; Tamura T; Orlowski RC; Sexton PM
    Mol Pharmacol; 1995 Apr; 47(4):798-809. PubMed ID: 7723741
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of L-type amino acid transporters in the uptake of glyphosate across mammalian epithelial tissues.
    Xu J; Li G; Wang Z; Si L; He S; Cai J; Huang J; Donovan MD
    Chemosphere; 2016 Feb; 145():487-94. PubMed ID: 26701683
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transport characteristics of a beta sheet breaker peptide across excised bovine nasal mucosa.
    Greimel A; Bernkop-Schnürch A; Del Curto MD; D'Antonio M
    Drug Dev Ind Pharm; 2007 Jan; 33(1):71-7. PubMed ID: 17192253
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of human tracheal/bronchial epithelial cell culture and bovine nasal respiratory explants for nasal drug transport studies.
    Chemuturi NV; Hayden P; Klausner M; Donovan MD
    J Pharm Sci; 2005 Sep; 94(9):1976-85. PubMed ID: 16052562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bilayer interaction and localization of cell penetrating peptides with model membranes: a comparative study of a human calcitonin (hCT)-derived peptide with pVEC and pAntp(43-58).
    Herbig ME; Fromm U; Leuenberger J; Krauss U; Beck-Sickinger AG; Merkle HP
    Biochim Biophys Acta; 2005 Jun; 1712(2):197-211. PubMed ID: 15919050
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diffusion rates and transport pathways of fluorescein isothiocyanate (FITC)-labeled model compounds through buccal epithelium.
    Hoogstraate AJ; Cullander C; Nagelkerke JF; Senel S; Verhoef JC; Junginger HE; Boddé HE
    Pharm Res; 1994 Jan; 11(1):83-9. PubMed ID: 7511241
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Transport of proteins and peptides across human cultured alveolar A549 cell monolayers].
    Wang ZY; Zhang Y; Zhang Q
    Yao Xue Xue Bao; 2004 May; 39(5):392-5. PubMed ID: 15338887
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nasal absorption and pharmacokinetic disposition of salmon calcitonin modified with low molecular weight polyethylene glycol.
    Shin BS; Jung JH; Lee KC; Yoo SD
    Chem Pharm Bull (Tokyo); 2004 Aug; 52(8):957-60. PubMed ID: 15304989
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acylation of salmon calcitonin modulates in vitro intestinal peptide flux through membrane permeability enhancement.
    Trier S; Linderoth L; Bjerregaard S; Strauss HM; Rahbek UL; Andresen TL
    Eur J Pharm Biopharm; 2015 Oct; 96():329-37. PubMed ID: 26347924
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Permeation of PEO-PBLA-FITC polymeric micelles in aortic endothelial cells.
    Liaw J; Aoyagi T; Kataoka K; Sakurai Y; Okano T
    Pharm Res; 1999 Feb; 16(2):213-20. PubMed ID: 10100305
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Side-chain lactam-bridge conformational constraints differentiate the activities of salmon and human calcitonins and reveal a new design concept for potent calcitonin analogues.
    Taylor JW; Jin QK; Sbacchi M; Wang L; Belfiore P; Garnier M; Kazantzis A; Kapurniotu A; Zaratin PF; Scheideler MA
    J Med Chem; 2002 Feb; 45(5):1108-21. PubMed ID: 11855991
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new method for drug transport studies on pig nasal mucosa using a horizontal Ussing chamber.
    Osth K; Gråsjö J; Björk E
    J Pharm Sci; 2002 May; 91(5):1259-73. PubMed ID: 11977102
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ion transport mechanisms in native rabbit nasal airway epithelium.
    Röpke M; Carstens S; Holm M; Frederiksen O
    Am J Physiol; 1996 Oct; 271(4 Pt 1):L637-45. PubMed ID: 8897912
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport of proteins and peptides across human cultured alveolar A549 cell monolayer.
    Wang Z; Zhang Q
    Int J Pharm; 2004 Jan; 269(2):451-6. PubMed ID: 14706256
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Permeation of losartan across human respiratory epithelium: an in vitro study with Calu-3 cells.
    Amoako-Tuffour M; Yeung PK; Agu RU
    Acta Pharm; 2009 Dec; 59(4):395-405. PubMed ID: 19919929
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Confocal laser scanning microscopic visualization of the transport of dextrans after nasal administration to rats: effects of absorption enhancers.
    Marttin E; Verhoef JC; Cullander C; Romeijn SG; Nagelkerke JF; Merkus FW
    Pharm Res; 1997 May; 14(5):631-7. PubMed ID: 9165535
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions of the human calcitonin fragment 9-32 with phospholipids: a monolayer study.
    Wagner K; Van Mau N; Boichot S; Kajava AV; Krauss U; Le Grimellec C; Beck-Sickinger A; Heitz F
    Biophys J; 2004 Jul; 87(1):386-95. PubMed ID: 15240473
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.