BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 9533687)

  • 1. Steady-state compartmentalization of lipid membranes by active proteins.
    Sabra MC; Mouritsen OG
    Biophys J; 1998 Feb; 74(2 Pt 1):745-52. PubMed ID: 9533687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins.
    Venturoli M; Smit B; Sperotto MM
    Biophys J; 2005 Mar; 88(3):1778-98. PubMed ID: 15738466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid-protein interactions of integral membrane proteins: a comparative simulation study.
    Deol SS; Bond PJ; Domene C; Sansom MS
    Biophys J; 2004 Dec; 87(6):3737-49. PubMed ID: 15465855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid/protein interactions and the membrane/water interfacial region.
    Domene C; Bond PJ; Deol SS; Sansom MS
    J Am Chem Soc; 2003 Dec; 125(49):14966-7. PubMed ID: 14653713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative EPR studies on lipid bilayer properties in nanodiscs and liposomes.
    Stepien P; Polit A; Wisniewska-Becker A
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):60-6. PubMed ID: 25306967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular sorting of lipids by bacteriorhodopsin in dilauroylphosphatidylcholine/distearoylphosphatidylcholine lipid bilayers.
    Dumas F; Sperotto MM; Lebrun MC; Tocanne JF; Mouritsen OG
    Biophys J; 1997 Oct; 73(4):1940-53. PubMed ID: 9336190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature dependence of the surface topography in dimyristoylphosphatidylcholine/distearoylphosphatidylcholine multibilayers.
    Giocondi MC; Le Grimellec C
    Biophys J; 2004 Apr; 86(4):2218-30. PubMed ID: 15041661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin.
    Harroun TA; Heller WT; Weiss TM; Yang L; Huang HW
    Biophys J; 1999 Jun; 76(6):3176-85. PubMed ID: 10354442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmembrane helices can induce domain formation in crowded model membranes.
    Domański J; Marrink SJ; Schäfer LV
    Biochim Biophys Acta; 2012 Apr; 1818(4):984-94. PubMed ID: 21884678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wetting and capillary condensation as means of protein organization in membranes.
    Gil T; Sabra MC; Ipsen JH; Mouritsen OG
    Biophys J; 1997 Oct; 73(4):1728-41. PubMed ID: 9336169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans.
    Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV
    Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anchoring of a monotopic membrane protein: the binding of prostaglandin H2 synthase-1 to the surface of a phospholipid bilayer.
    Nina M; Bernèche S; Roux B
    Eur Biophys J; 2000; 29(6):439-54. PubMed ID: 11081405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Helix tilt of the M2 transmembrane peptide from influenza A virus: an intrinsic property.
    Kovacs FA; Denny JK; Song Z; Quine JR; Cross TA
    J Mol Biol; 2000 Jan; 295(1):117-25. PubMed ID: 10623512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholesterol effects on a mixed-chain phosphatidylcholine bilayer: a molecular dynamics simulation study.
    Róg T; Pasenkiewicz-Gierula M
    Biochimie; 2006 May; 88(5):449-60. PubMed ID: 16356621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous diffusion in a gel-fluid lipid environment: a combined solid-state NMR and obstructed random-walk perspective.
    Arnold A; Paris M; Auger M
    Biophys J; 2004 Oct; 87(4):2456-69. PubMed ID: 15454443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental evidence for hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin.
    Harroun TA; Heller WT; Weiss TM; Yang L; Huang HW
    Biophys J; 1999 Feb; 76(2):937-45. PubMed ID: 9929495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perturbation of a lipid membrane by amphipathic peptides and its role in pore formation.
    Zemel A; Ben-Shaul A; May S
    Eur Biophys J; 2005 May; 34(3):230-42. PubMed ID: 15619088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of specific lipid-binding sites in integral membrane proteins.
    Lensink MF; Govaerts C; Ruysschaert JM
    J Biol Chem; 2010 Apr; 285(14):10519-26. PubMed ID: 20139086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study of the interactions between the first transmembrane segment of NS2 protein and a POPC lipid bilayer.
    Hung HM; Nguyen VP; Ngo ST; Nguyen MT
    Biophys Chem; 2016 Oct; 217():1-7. PubMed ID: 27455027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulation of short-wavelength collective dynamics of phospholipid membranes.
    Conti Nibali V; D'Angelo G; Tarek M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):050301. PubMed ID: 25353727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.