BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 9533688)

  • 1. Conservation of the conformation of the porphyrin macrocycle in hemoproteins.
    Jentzen W; Ma JG; Shelnutt JA
    Biophys J; 1998 Feb; 74(2 Pt 1):753-63. PubMed ID: 9533688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of metal displacements in a saddle distorted macrocycle: synthesis, structure, and properties of high-spin Fe(III) porphyrins and implications for the hemoproteins.
    Patra R; Chaudhary A; Ghosh SK; Rath SP
    Inorg Chem; 2008 Sep; 47(18):8324-35. PubMed ID: 18700752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structural origin of nonplanar heme distortions in tetraheme ferricytochromes c3.
    Ma JG; Zhang J; Franco R; Jia SL; Moura I; Moura JJ; Kroneck PM; Shelnutt JA
    Biochemistry; 1998 Sep; 37(36):12431-42. PubMed ID: 9730815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved nonplanar heme distortions in cytochromes c.
    Hobbs JD; Shelnutt JA
    J Protein Chem; 1995 Jan; 14(1):19-25. PubMed ID: 7779259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-induced changes in nonplanarity of the porphyrin in nickel cytochrome c probed by resonance Raman spectroscopy.
    Ma JG; Laberge M; Song XZ; Jentzen W; Jia SL; Zhang J; Vanderkooi JM; Shelnutt JA
    Biochemistry; 1998 Apr; 37(15):5118-28. PubMed ID: 9548742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opposing influences of ruffling and doming deformation on the 4-N cavity size of porphyrin macrocycles: the role of heme deformations revealed.
    Zhou Z; Shen M; Cao C; Liu Q; Yan Z
    Chemistry; 2012 Jun; 18(25):7675-9. PubMed ID: 22588783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonplanar heme deformations and excited state displacements in nickel porphyrins detected by Raman spectroscopy at soret excitation.
    Huang Q; Medforth CJ; Schweitzer-Stenner R
    J Phys Chem A; 2005 Nov; 109(46):10493-502. PubMed ID: 16834304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of mixed substituents on the macrocyclic ring distortions of free base porphyrins and their metal complexes.
    Bhyrappa P; Arunkumar C; Varghese B
    Inorg Chem; 2009 May; 48(9):3954-65. PubMed ID: 19334709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normal coordinate structural decomposition of the heme distortions of hemoglobin in various quaternary states and bound to allosteric effectors.
    Laberge M; Yonetani T; Fidy J
    Mol Divers; 2003; 7(1):15-23. PubMed ID: 14768900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substituent-Induced Perturbation Symmetries and Distortions of meso-tert-Butylporphyrins.
    Song XZ; Jentzen W; Jaquinod L; Khoury RG; Medforth CJ; Jia SL; Ma JG; Smith KM; Shelnutt JA
    Inorg Chem; 1998 May; 37(9):2117-2128. PubMed ID: 11670364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical activity of hemoproteins in the Soret region. Circular dichroism of the heme undecapeptide of cytochrome c in aqueous solution.
    Blauer G; Sreerama N; Woody RW
    Biochemistry; 1993 Jul; 32(26):6674-9. PubMed ID: 8392367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The conserved active-site loop residues of ferrochelatase induce porphyrin conformational changes necessary for catalysis.
    Shi Z; Franco R; Haddad R; Shelnutt JA; Ferreira GC
    Biochemistry; 2006 Mar; 45(9):2904-12. PubMed ID: 16503645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance Raman studies on the ligand-iron interactions in hemoproteins and metallo-porphyrins.
    Kitagawa T; Ozaki Y; Kyogoku Y
    Adv Biophys; 1978; 11():153-96. PubMed ID: 27953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidation of the Correlation between Heme Distortion and Tertiary Structure of the Heme-Binding Pocket Using a Convolutional Neural Network.
    Kondo HX; Iizuka H; Masumoto G; Kabaya Y; Kanematsu Y; Takano Y
    Biomolecules; 2022 Aug; 12(9):. PubMed ID: 36139011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of heme distortion on oxygen affinity in heme proteins: the protoglobin case.
    Bikiel DE; Forti F; Boechi L; Nardini M; Luque FJ; Martí MA; Estrin DA
    J Phys Chem B; 2010 Jul; 114(25):8536-43. PubMed ID: 20524694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geometric constraints for porphyrin binding in helical protein binding sites.
    Negron C; Fufezan C; Koder RL
    Proteins; 2009 Feb; 74(2):400-16. PubMed ID: 18636480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The endogenous calcium ions of horseradish peroxidase C are required to maintain the functional nonplanarity of the heme.
    Laberge M; Huang Q; Schweitzer-Stenner R; Fidy J
    Biophys J; 2003 Apr; 84(4):2542-52. PubMed ID: 12668462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heme distortions in sperm-whale carbonmonoxy myoglobin: correlations between rotational strengths and heme distortions in MD-generated structures.
    Kiefl C; Sreerama N; Haddad R; Sun L; Jentzen W; Lu Y; Qiu Y; Shelnutt JA; Woody RW
    J Am Chem Soc; 2002 Apr; 124(13):3385-94. PubMed ID: 11916424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axial Coordination and Conformational Heterogeneity of Nickel(II) Tetraphenylporphyrin Complexes with Nitrogenous Bases.
    Jia SL; Jentzen W; Shang M; Song XZ; Ma JG; Scheidt WR; Shelnutt JA
    Inorg Chem; 1998 Aug; 37(17):4402-4412. PubMed ID: 11670577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deformation of chlorin rings in the Photosystem II crystal structure.
    Saito K; Umena Y; Kawakami K; Shen JR; Kamiya N; Ishikita H
    Biochemistry; 2012 May; 51(21):4290-9. PubMed ID: 22568617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.