These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 9533691)

  • 1. A Brownian dynamics program for the simulation of linear and circular DNA and other wormlike chain polyelectrolytes.
    Klenin K; Merlitz H; Langowski J
    Biophys J; 1998 Feb; 74(2 Pt 1):780-8. PubMed ID: 9533691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large bubble drives circular DNA melting.
    Sengupta S; Bhattacharjee SM; Mishra G
    Phys Chem Chem Phys; 2024 Jul; 26(30):20483-20489. PubMed ID: 39027987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Torsional rigidities of weakly strained DNAs.
    Fujimoto BS; Brewood GP; Schurr JM
    Biophys J; 2006 Dec; 91(11):4166-79. PubMed ID: 16963514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sedimentation of macroscopic rigid knots and its relation to gel electrophoretic mobility of DNA knots.
    Weber C; Carlen M; Dietler G; Rawdon EJ; Stasiak A
    Sci Rep; 2013; 3():1091. PubMed ID: 23346349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single Molecule Hydrodynamic Separation Allows Sensitive and Quantitative Analysis of DNA Conformation and Binding Interactions in Free Solution.
    Friedrich SM; Liu KJ; Wang TH
    J Am Chem Soc; 2016 Jan; 138(1):319-27. PubMed ID: 26684193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the relaxation of internal DNA segments during genome mapping in nanochannels.
    Jain A; Sheats J; Reifenberger JG; Cao H; Dorfman KD
    Biomicrofluidics; 2016 Sep; 10(5):054117. PubMed ID: 27795749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bent DNA Bows as Sensing Amplifiers for Detecting DNA-Interacting Salts and Molecules.
    Freeland J; Zhang L; Wang ST; Ruiz M; Wang Y
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32486417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleosome spacing controls chromatin spatial structure and accessibility.
    Zülske T; Attou A; Groß L; Hörl D; Harz H; Wedemann G
    Biophys J; 2024 Apr; 123(7):847-857. PubMed ID: 38419332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of chromosome organization in a minimal bacterial cell.
    Gilbert BR; Thornburg ZR; Brier TA; Stevens JA; Grünewald F; Stone JE; Marrink SJ; Luthey-Schulten Z
    Front Cell Dev Biol; 2023; 11():1214962. PubMed ID: 37621774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cohesin and CTCF complexes mediate contacts in chromatin loops depending on nucleosome positions.
    Attou A; Zülske T; Wedemann G
    Biophys J; 2022 Dec; 121(24):4788-4799. PubMed ID: 36325618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in nanoscale organization of regulatory active and inactive human chromatin.
    Brandstetter K; Zülske T; Ragoczy T; Hörl D; Guirao-Ortiz M; Steinek C; Barnes T; Stumberger G; Schwach J; Haugen E; Rynes E; Korber P; Stamatoyannopoulos JA; Leonhardt H; Wedemann G; Harz H
    Biophys J; 2022 Mar; 121(6):977-990. PubMed ID: 35150617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-phase dynamics of DNA supercoiling based on DNA polymer physics.
    Wan B; Yu J
    Biophys J; 2022 Feb; 121(4):658-669. PubMed ID: 35016860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Traveling Salesman Finds Random Walk: A Curve Reconstruction Algorithm for Supercoiled DNA.
    Babamohammadi S; Lillian TD
    Biophys J; 2020 Dec; 119(12):2517-2523. PubMed ID: 33217387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of the Buckling Transition in Double-Stranded DNA and RNA.
    Ott K; Martini L; Lipfert J; Gerland U
    Biophys J; 2020 Apr; 118(7):1690-1701. PubMed ID: 32367807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Study of the Chiral Organization of the Phage Genome Induced by the Packaging Motor.
    Cruz B; Zhu Z; Calderer C; Arsuaga J; Vazquez M
    Biophys J; 2020 May; 118(9):2103-2116. PubMed ID: 32353255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudo-chemotaxis of active Brownian particles competing for food.
    Merlitz H; Vuijk HD; Wittmann R; Sharma A; Sommer JU
    PLoS One; 2020; 15(4):e0230873. PubMed ID: 32267868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous Switching among Conformational Ensembles in Intrinsically Disordered Proteins.
    Choi UB; Sanabria H; Smirnova T; Bowen ME; Weninger KR
    Biomolecules; 2019 Mar; 9(3):. PubMed ID: 30909517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Jörg Langowski: his scientific legacy and the future it promises.
    Chirico G; Gansen A; Leuba SH; Olins AL; Olins DE; Smith JC; Tóth K
    BMC Biophys; 2018; 11():5. PubMed ID: 30026939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Out of the Randomness: Correlating Noise in Biological Systems.
    Collini M; Bouzin M; Chirico G
    Biophys J; 2018 May; 114(10):2298-2307. PubMed ID: 29477335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vitro Assembly Kinetics of Cytoplasmic Intermediate Filaments: A Correlative Monte Carlo Simulation Study.
    Mücke N; Winheim S; Merlitz H; Buchholz J; Langowski J; Herrmann H
    PLoS One; 2016; 11(6):e0157451. PubMed ID: 27304995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.