BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 9533862)

  • 1. Inwardly rectifying potassium channels in lens epithelium are from the IRK1 (Kir 2.1) family.
    Rae JL; Shepard AR
    Exp Eye Res; 1998 Mar; 66(3):347-59. PubMed ID: 9533862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular cloning and expression of an inwardly rectifying K(+) channel from bovine corneal endothelial cells.
    Yang D; Sun F; Thomas LL; Offord J; MacCallum DK; Dawson DC; Hughes BA; Ernst SA
    Invest Ophthalmol Vis Sci; 2000 Sep; 41(10):2936-44. PubMed ID: 10967048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kir2.1 Potassium channels and corneal epithelia.
    Rae JL; Shepard AR
    Curr Eye Res; 2000 Feb; 20(2):144-52. PubMed ID: 10617917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of an inward rectifier channel (IKir) found in avian vestibular hair cells: cloning and expression of pKir2.1.
    Correia MJ; Wood TG; Prusak D; Weng T; Rennie KJ; Wang HQ
    Physiol Genomics; 2004 Oct; 19(2):155-69. PubMed ID: 15316115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gating of inwardly rectifying K+ channels localized to a single negatively charged residue.
    Wible BA; Taglialatela M; Ficker E; Brown AM
    Nature; 1994 Sep; 371(6494):246-9. PubMed ID: 8078584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inwardly rectifying K+ channel Kir7.1 is highly expressed in thyroid follicular cells, intestinal epithelial cells and choroid plexus epithelial cells: implication for a functional coupling with Na+,K+-ATPase.
    Nakamura N; Suzuki Y; Sakuta H; Ookata K; Kawahara K; Hirose S
    Biochem J; 1999 Sep; 342 ( Pt 2)(Pt 2):329-36. PubMed ID: 10455019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of an inwardly rectifying potassium channel in the rabbit superior lacrimal gland.
    Herok GH; Millar TJ; Anderton PJ; Martin DK
    Invest Ophthalmol Vis Sci; 1998 Feb; 39(2):308-14. PubMed ID: 9477987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of inwardly rectifying K(+) conductance across the basolateral membrane of rat tracheal epithelia.
    Jeong JS; Lee HJ; Jung JS; Shin SH; Son YJ; Yoon JH; Lee SH; Lee HS; Yun I; Hwang TH
    Biochem Biophys Res Commun; 2001 Nov; 288(4):914-20. PubMed ID: 11688996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An inwardly rectifying K+ channel in bovine parotid acinar cells: possible involvement of Kir2.1.
    Hayashi M; Komazaki S; Ishikawa T
    J Physiol; 2003 Feb; 547(Pt 1):255-69. PubMed ID: 12562923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions.
    Zhang H; He C; Yan X; Mirshahi T; Logothetis DE
    Nat Cell Biol; 1999 Jul; 1(3):183-8. PubMed ID: 10559906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning, expression, and localization of a rat hepatocyte inwardly rectifying potassium channel.
    Hill CE; Briggs MM; Liu J; Magtanong L
    Am J Physiol Gastrointest Liver Physiol; 2002 Feb; 282(2):G233-40. PubMed ID: 11804844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elementary properties of Kir2.1, a strong inwardly rectifying K(+) channel expressed by pigeon vestibular type II hair cells.
    Zampini V; Masetto S; Correia MJ
    Neuroscience; 2008 Sep; 155(4):1250-61. PubMed ID: 18652879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium channels in chick lens epithelium change with maturation.
    Rae JL; Cooper KE
    Lens Eye Toxic Res; 1989; 6(4):833-43. PubMed ID: 2487286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Molecular mechanism of the G protein regulation of inwardly rectifying potassium channels].
    Yamada M; Kurachi Y; Hosoya Y; Inanobe A
    Tanpakushitsu Kakusan Koso; 1995 Nov; 40(15):2297-306. PubMed ID: 8532888
    [No Abstract]   [Full Text] [Related]  

  • 15. Alternation of inwardly rectifying background K+ channel during development of rat fetal cardiomyocytes.
    Nagashima M; Tohse N; Kimura K; Yamada Y; Fujii N; Yabu H
    J Mol Cell Cardiol; 2001 Mar; 33(3):533-43. PubMed ID: 11181021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Kir2.1 channel activity in cultured trabecular meshwork cells.
    Llobet A; Gasull X; Palés J; Martí E; Gual A
    Invest Ophthalmol Vis Sci; 2001 Sep; 42(10):2371-9. PubMed ID: 11527952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular links in Kir subunits control the unitary conductance of SUR/Kir6.0 ion channels.
    Repunte VP; Nakamura H; Fujita A; Horio Y; Findlay I; Pott L; Kurachi Y
    EMBO J; 1999 Jun; 18(12):3317-24. PubMed ID: 10369672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proliferative gliosis causes mislocation and inactivation of inwardly rectifying K(+) (Kir) channels in rabbit retinal glial cells.
    Ulbricht E; Pannicke T; Hollborn M; Raap M; Goczalik I; Iandiev I; Härtig W; Uhlmann S; Wiedemann P; Reichenbach A; Bringmann A; Francke M
    Exp Eye Res; 2008 Feb; 86(2):305-13. PubMed ID: 18078934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kv3.3 potassium channels in lens epithelium and corneal endothelium.
    Rae JL; Shepard AR
    Exp Eye Res; 2000 Mar; 70(3):339-48. PubMed ID: 10712820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification.
    Pegan S; Arrabit C; Zhou W; Kwiatkowski W; Collins A; Slesinger PA; Choe S
    Nat Neurosci; 2005 Mar; 8(3):279-87. PubMed ID: 15723059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.