These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 9534243)

  • 1. Stationary phase, amino acid limitation and recovery from stationary phase modulate the stability and translation of chloramphenicol acetyltransferase mRNA and total mRNA in Escherichia coli.
    Kuzj AES; Medberry PS; Schottel JL
    Microbiology (Reading); 1998 Mar; 144 ( Pt 3)():739-750. PubMed ID: 9534243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel transcriptional response by the cat gene during slow growth of Escherichia coli.
    Meyer BJ; Schottel JL
    J Bacteriol; 1991 Jun; 173(11):3523-30. PubMed ID: 1710618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The low level expression of chloramphenicol acetyltransferase (CAT) mRNA in Escherichia coli is not dependent on either Shine-Dalgarno or the downstream boxes in the CAT gene.
    Odjakova M; Golshani A; Ivanov G; Abou Haidar M; Ivanov I
    Microbiol Res; 1998 Aug; 153(2):173-8. PubMed ID: 9760750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terminal sequences do not contain the rate-limiting decay determinants of E. coli cat mRNA.
    DeFranco C; Schottel JL
    Nucleic Acids Res; 1989 Feb; 17(3):1139-57. PubMed ID: 2466234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of a streptomycete leaderless mRNA encoding chloramphenicol acetyltransferase in Escherichia coli.
    Wu CJ; Janssen GR
    J Bacteriol; 1997 Nov; 179(21):6824-30. PubMed ID: 9352935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability.
    Lange R; Hengge-Aronis R
    Genes Dev; 1994 Jul; 8(13):1600-12. PubMed ID: 7525405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of mRNA stability participates in stationary-phase-specific expression of ribosome modulation factor.
    Aiso T; Yoshida H; Wada A; Ohki R
    J Bacteriol; 2005 Mar; 187(6):1951-8. PubMed ID: 15743942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of tandemly repeated AGG triplets on the translation of CAT-mRNA in E. coli.
    Ivanov I; Alexandrova R; Dragulev B; Saraffova A; AbouHaidar MG
    FEBS Lett; 1992 Jul; 307(2):173-6. PubMed ID: 1379538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloramphenicol-induced changes in the synthesis of ribosomal, transfer, and messenger ribonucleic acids in Escherichia coli B/r.
    Shen V; Bremer H
    J Bacteriol; 1977 Jun; 130(3):1098-108. PubMed ID: 324974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability of group I intron RNA in Escherichia coli and its potential application in a novel expression vector.
    Chan WK; Belfort G; Belfort M
    Gene; 1988 Dec; 73(2):295-304. PubMed ID: 2468580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperativity of stabilized mRNA and enhanced translation activity in the cell-free system.
    Kitaoka Y; Nishimura N; Niwano M
    J Biotechnol; 1996 Jul; 48(1-2):1-8. PubMed ID: 8818268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth rate regulation of Escherichia coli acetyl coenzyme A carboxylase, which catalyzes the first committed step of lipid biosynthesis.
    Li SJ; Cronan JE
    J Bacteriol; 1993 Jan; 175(2):332-40. PubMed ID: 7678242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of glucose on the expression parameters of recombinant protein in Escherichia coli during batch growth in complex medium.
    Li X; Taylor KB
    Biotechnol Prog; 1994; 10(2):160-4. PubMed ID: 7513529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation of translation efficiency with the decay of lacZ mRNA in Escherichia coli.
    McCormick JR; Zengel JM; Lindahl L
    J Mol Biol; 1994 Jun; 239(5):608-22. PubMed ID: 8014986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Process characterization of a novel cross-regulation system for cloned protein production in Escherichia coli.
    Chen W; Kallio PT; Bailey JE
    Biotechnol Prog; 1995; 11(4):397-402. PubMed ID: 7544585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chloramphenicol-induced translational activation of cat messenger RNA in vitro.
    Dick T; Matzura H
    J Mol Biol; 1990 Apr; 212(4):661-8. PubMed ID: 2109801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization of discrete mRNA breakdown products in ams pnp rnb multiple mutants of Escherichia coli K-12.
    Arraiano CM; Yancey SD; Kushner SR
    J Bacteriol; 1988 Oct; 170(10):4625-33. PubMed ID: 2459106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chloramphenicol induces translation of the mRNA for a chloramphenicol-resistance gene in Bacillus subtilis.
    Duvall EJ; Lovett PS
    Proc Natl Acad Sci U S A; 1986 Jun; 83(11):3939-43. PubMed ID: 3086871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA synthesis and degradation during preferential inhibition of protein synthesis by cobalt chloride in Escherichia coli K-12.
    Guha C; Mookerjee A
    Mol Biol Rep; 1981 Aug; 7(4):217-20. PubMed ID: 6169983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Massive presence of the Escherichia coli 'major cold-shock protein' CspA under non-stress conditions.
    Brandi A; Spurio R; Gualerzi CO; Pon CL
    EMBO J; 1999 Mar; 18(6):1653-9. PubMed ID: 10075935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.