These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 9535012)
1. Role of K+ channel opening and stimulation of cyclic GMP in the vasorelaxant effects of nicorandil in isolated piglet pulmonary and mesenteric arteries: relative efficacy and interactions between both pathways. Pérez-Vizcaíno F; Cogolludo AL; Villamor E; Tamargo J Br J Pharmacol; 1998 Mar; 123(5):847-54. PubMed ID: 9535012 [TBL] [Abstract][Full Text] [Related]
2. The contribution of guanylate cyclase stimulation and K+ channel opening to nicorandil-induced vasorelaxation depends on the conduit vessel and on the nature of the spasmogen. Magnon M; Durand I; Cavero I J Pharmacol Exp Ther; 1994 Mar; 268(3):1411-8. PubMed ID: 7908056 [TBL] [Abstract][Full Text] [Related]
3. Involvement of protein kinase C in reduced relaxant responses to the NO/cyclic GMP pathway in piglet pulmonary arteries contracted by the thromboxane A2-mimetic U46619. Pérez-Vizcaíno F; Villamor E; Duarte J; Tamargo J Br J Pharmacol; 1997 Aug; 121(7):1323-33. PubMed ID: 9257910 [TBL] [Abstract][Full Text] [Related]
4. Effects of nicorandil as compared to mixtures of sodium nitroprusside and levcromakalim in isolated rat aorta. Cogolludo AL; Pérez-Vizcaíno F; Fajardo S; Ibarra M; Tamargo J Br J Pharmacol; 1999 Feb; 126(4):1025-33. PubMed ID: 10193784 [TBL] [Abstract][Full Text] [Related]
5. Nicorandil: differential contribution of K+ channel opening and guanylate cyclase stimulation to its vasorelaxant effects on various endothelin-1-contracted arterial preparations. Comparison to aprikalim (RP 52891) and nitroglycerin. Borg C; Mondot S; Mestre M; Cavero I J Pharmacol Exp Ther; 1991 Nov; 259(2):526-34. PubMed ID: 1682478 [TBL] [Abstract][Full Text] [Related]
6. Analysis of relaxation and repolarization mechanisms of nicorandil in rat mesenteric artery. Fujiwara T; Angus JA Br J Pharmacol; 1996 Dec; 119(8):1549-56. PubMed ID: 8982500 [TBL] [Abstract][Full Text] [Related]
7. Nicorandil-induced vasorelaxation: functional evidence for K+ channel-dependent and cyclic GMP-dependent components in a single vascular preparation. Meisheri KD; Cipkus-Dubray LA; Hosner JM; Khan SA J Cardiovasc Pharmacol; 1991 Jun; 17(6):903-12. PubMed ID: 1714013 [TBL] [Abstract][Full Text] [Related]
9. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries. Prieto D; Simonsen U; Hernández M; García-Sacristán A Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568 [TBL] [Abstract][Full Text] [Related]
10. Mechanisms involved in SNP-induced relaxation and [Ca+]i reduction in piglet pulmonary and systemic arteries. Cogolludo AL; Pérez-Vizcaíno F; Zaragozá-Arnáez F; Ibarra M; López-López G; López-Miranda V; Tamargo J Br J Pharmacol; 2001 Feb; 132(4):959-67. PubMed ID: 11181438 [TBL] [Abstract][Full Text] [Related]
11. K+ channel-opening action contributes to the preventive effects of nicorandil on U46619-induced vasoconstriction of canine large coronary arteries in vivo. Kamijo T; Iwai T; Haruta K; Takeda K Arch Int Pharmacodyn Ther; 1996; 331(3):273-84. PubMed ID: 9124999 [TBL] [Abstract][Full Text] [Related]
12. Dual mechanism of action of nicorandil on rabbit corpus cavernosal smooth muscle tone. Hsieh GC; Kolasa T; Sullivan JP; Brioni JD Int J Impot Res; 2001 Aug; 13(4):240-6. PubMed ID: 11494082 [TBL] [Abstract][Full Text] [Related]
13. The relaxant action of nicorandil in bovine tracheal smooth muscle. Yunoki M; Nakahara T; Moriuchi H; Sakamoto K; Ishii K Pharmacology; 2012; 89(5-6):327-32. PubMed ID: 22614221 [TBL] [Abstract][Full Text] [Related]
14. Comparison of the vascular relaxant effects of ATP-dependent K+ channel openers on aorta and pulmonary artery isolated from spontaneously hypertensive and Wistar-Kyoto rats. Kwan YW; To KW; Lau WM; Tsang SH Eur J Pharmacol; 1999 Jan; 365(2-3):241-51. PubMed ID: 9988108 [TBL] [Abstract][Full Text] [Related]
15. Vasodilator effects of sodium nitroprusside, levcromakalim and their combination in isolated rat aorta. Pérez-Vizcaíno F; Cogolludo AL; Zaragozá-Arnáez F; Fajardo S; Ibarra M; López-López JG; Tamargo J Br J Pharmacol; 1999 Dec; 128(7):1419-26. PubMed ID: 10602320 [TBL] [Abstract][Full Text] [Related]
16. K+ channel opening mediates the vasorelaxant effects of nicorandil in the intact vascular system. Cavero I; Pratz J; Mondot S Z Kardiol; 1991; 80 Suppl 7():35-41. PubMed ID: 1838848 [TBL] [Abstract][Full Text] [Related]
17. Modulation of relaxation to levcromakalim by S-nitroso-N-acetylpenicillamine (SNAP) and 8-bromo cyclic GMP in the rat isolated mesenteric artery. White R; Hiley CR Br J Pharmacol; 1998 Jul; 124(6):1219-26. PubMed ID: 9720794 [TBL] [Abstract][Full Text] [Related]
18. Pharmacological interaction experiments differentiate between glibenclamide-sensitive K+ channels and cyclic GMP as components of vasodilation by nicorandil. Holzmann S; Kukovetz WR; Braida C; Pöch G Eur J Pharmacol; 1992 Apr; 215(1):1-7. PubMed ID: 1325362 [TBL] [Abstract][Full Text] [Related]
19. The role of NO-cGMP pathway and potassium channels on the relaxation induced by clonidine in the rat mesenteric arterial bed. Pimentel AM; Costa CA; Carvalho LC; Brandão RM; Rangel BM; Tano T; Soares de Moura R; Resende AC Vascul Pharmacol; 2007 May; 46(5):353-9. PubMed ID: 17258511 [TBL] [Abstract][Full Text] [Related]
20. Differential antagonism by glibenclamide of the relaxant effects of cromakalim, pinacidil and nicorandil on canine large coronary arteries. Satoh K; Yamada H; Taira N Naunyn Schmiedebergs Arch Pharmacol; 1991 Jan; 343(1):76-82. PubMed ID: 1827660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]