These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 9535526)

  • 1. Robot-aided neurorehabilitation.
    Krebs HI; Hogan N; Aisen ML; Volpe BT
    IEEE Trans Rehabil Eng; 1998 Mar; 6(1):75-87. PubMed ID: 9535526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overview of clinical trials with MIT-MANUS: a robot-aided neuro-rehabilitation facility.
    Krebs HI; Hogan N; Volpe BT; Aisen ML; Edelstein L; Diels C
    Technol Health Care; 1999; 7(6):419-23. PubMed ID: 10665675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel robot neurorehabilitation for upper limb motion.
    Xiu-Feng Z; Lin-Hong J; Li-Yun G
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():5040-3. PubMed ID: 17281378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke.
    Aisen ML; Krebs HI; Hogan N; McDowell F; Volpe BT
    Arch Neurol; 1997 Apr; 54(4):443-6. PubMed ID: 9109746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robot-aided neurorehabilitation: a robot for wrist rehabilitation.
    Krebs HI; Volpe BT; Williams D; Celestino J; Charles SK; Lynch D; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):327-35. PubMed ID: 17894265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb.
    Colombo R; Pisano F; Micera S; Mazzone A; Delconte C; Carrozza MC; Dario P; Minuco G
    Neurorehabil Neural Repair; 2008; 22(1):50-63. PubMed ID: 17626223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inter-hemispheric coupling changes associate with motor improvements after robotic stroke rehabilitation.
    Pellegrino G; Tomasevic L; Tombini M; Assenza G; Bravi M; Sterzi S; Giacobbe V; Zollo L; Guglielmelli E; Cavallo G; Vernieri F; Tecchio F
    Restor Neurol Neurosci; 2012; 30(6):497-510. PubMed ID: 22868224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroencephalographic markers of robot-aided therapy in stroke patients for the evaluation of upper limb rehabilitation.
    Sale P; Infarinato F; Del Percio C; Lizio R; Babiloni C; Foti C; Franceschini M
    Int J Rehabil Res; 2015 Dec; 38(4):294-305. PubMed ID: 26317486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robot-aided neurorehabilitation in sub-acute and chronic stroke: does spontaneous recovery have a limited impact on outcome?
    Colombo R; Sterpi I; Mazzone A; Delconte C; Pisano F
    NeuroRehabilitation; 2013; 33(4):621-9. PubMed ID: 24029005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design strategies to improve patient motivation during robot-aided rehabilitation.
    Colombo R; Pisano F; Mazzone A; Delconte C; Micera S; Carrozza MC; Dario P; Minuco G
    J Neuroeng Rehabil; 2007 Feb; 4():3. PubMed ID: 17309790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robot-aided therapy on the upper limb of subacute and chronic stroke patients: a biomechanical approach.
    Mazzoleni S; Filippi M; Carrozza MC; Posteraro F; Puzzolante L; Falchi E
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975422. PubMed ID: 22275623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robot-Aided Neurorehabilitation: A Pediatric Robot for Ankle Rehabilitation.
    Michmizos KP; Rossi S; Castelli E; Cappa P; Krebs HI
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1056-67. PubMed ID: 25769168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of robot-assisted fingers training in chronic stroke survivors: a pilot randomized-controlled trial.
    Susanto EA; Tong RK; Ockenfeld C; Ho NS
    J Neuroeng Rehabil; 2015 Apr; 12():42. PubMed ID: 25906983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robot-aided neurorehabilitation of the upper extremities.
    Riener R; Nef T; Colombo G
    Med Biol Eng Comput; 2005 Jan; 43(1):2-10. PubMed ID: 15742713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review.
    Kwakkel G; Kollen BJ; Krebs HI
    Neurorehabil Neural Repair; 2008; 22(2):111-21. PubMed ID: 17876068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mobile robot therapist for under-supervised training with robot/computer assisted motivating systems.
    Shakya Y; Johnson MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4511-4. PubMed ID: 19163718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system.
    Kim H; Miller LM; Fedulow I; Simkins M; Abrams GM; Byl N; Rosen J
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):153-64. PubMed ID: 22855233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A variable structure pantograph mechanism for comprehensive upper extremity haptic movement training.
    Oblak J; Perry JC; Jung JH; Cikajlo I; Keller T; Matjacić Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5859-62. PubMed ID: 21096924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Taking a lesson from patients' recovery strategies to optimize training during robot-aided rehabilitation.
    Colombo R; Sterpi I; Mazzone A; Delconte C; Pisano F
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):276-85. PubMed ID: 22623406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.