BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 9535829)

  • 1. Hydrogen peroxide causes RAD9-dependent cell cycle arrest in G2 in Saccharomyces cerevisiae whereas menadione causes G1 arrest independent of RAD9 function.
    Flattery-O'Brien JA; Dawes IW
    J Biol Chem; 1998 Apr; 273(15):8564-71. PubMed ID: 9535829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RAD9-dependent G1 arrest defines a second checkpoint for damaged DNA in the cell cycle of Saccharomyces cerevisiae.
    Siede W; Friedberg AS; Friedberg EC
    Proc Natl Acad Sci U S A; 1993 Sep; 90(17):7985-9. PubMed ID: 8367452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of G1 checkpoint control in the yeast Saccharomyces cerevisiae following exposure to DNA-damaging agents.
    Siede W; Friedberg AS; Dianova I; Friedberg EC
    Genetics; 1994 Oct; 138(2):271-81. PubMed ID: 7828811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RAD9 and RAD24 define two additive, interacting branches of the DNA damage checkpoint pathway in budding yeast normally required for Rad53 modification and activation.
    de la Torre-Ruiz MA; Green CM; Lowndes NF
    EMBO J; 1998 May; 17(9):2687-98. PubMed ID: 9564050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Saccharomyces cerevisiae RAD9 cell cycle checkpoint gene is required for optimal repair of UV-induced pyrimidine dimers in both G(1) and G(2)/M phases of the cell cycle.
    Al-Moghrabi NM; Al-Sharif IS; Aboussekhra A
    Nucleic Acids Res; 2001 May; 29(10):2020-5. PubMed ID: 11353070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage.
    Vialard JE; Gilbert CS; Green CM; Lowndes NF
    EMBO J; 1998 Oct; 17(19):5679-88. PubMed ID: 9755168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust G1 checkpoint arrest in budding yeast: dependence on DNA damage signaling and repair.
    Gerald JN; Benjamin JM; Kron SJ
    J Cell Sci; 2002 Apr; 115(Pt 8):1749-57. PubMed ID: 11950891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cisplatin DNA cross-links do not inhibit S-phase and cause only a G2/M arrest in Saccharomyces cerevisiae.
    Grossmann KF; Brown JC; Moses RE
    Mutat Res; 1999 May; 434(1):29-39. PubMed ID: 10377946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair.
    Weinert TA; Kiser GL; Hartwell LH
    Genes Dev; 1994 Mar; 8(6):652-65. PubMed ID: 7926756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell cycle arrest of cdc mutants and specificity of the RAD9 checkpoint.
    Weinert TA; Hartwell LH
    Genetics; 1993 May; 134(1):63-80. PubMed ID: 8514150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperthermia and paraquat-induced G1 arrest in the yeast Saccharomyces cerevisiae is independent of the RAD9 gene.
    Nunes E; Siede W
    Radiat Environ Biophys; 1996 Feb; 35(1):55-7. PubMed ID: 8907645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cdc20, a beta-transducin homologue, links RAD9-mediated G2/M checkpoint control to mitosis in Saccharomyces cerevisiae.
    Lim HH; Surana U
    Mol Gen Genet; 1996 Nov; 253(1-2):138-48. PubMed ID: 9003297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Saccharomyces cerevisiae RAD9 checkpoint reduces the DNA damage-associated stimulation of directed translocations.
    Fasullo M; Bennett T; AhChing P; Koudelik J
    Mol Cell Biol; 1998 Mar; 18(3):1190-200. PubMed ID: 9488434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae.
    Weinert TA; Hartwell LH
    Science; 1988 Jul; 241(4863):317-22. PubMed ID: 3291120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and sequence analysis of the Saccharomyces cerevisiae RAD9 gene and further evidence that its product is required for cell cycle arrest induced by DNA damage.
    Schiestl RH; Reynolds P; Prakash S; Prakash L
    Mol Cell Biol; 1989 May; 9(5):1882-96. PubMed ID: 2664461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Saccharomyces cerevisiae proteins induced by peroxide and superoxide stress.
    Jamieson DJ; Rivers SL; Stephen DW
    Microbiology (Reading); 1994 Dec; 140 ( Pt 12)():3277-83. PubMed ID: 7881546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential regulation of two closely clustered yeast genes, MAG1 and DDI1, by cell-cycle checkpoints.
    Zhu Y; Xiao W
    Nucleic Acids Res; 1998 Dec; 26(23):5402-8. PubMed ID: 9826765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of yeast forkhead-associated cell cycle transcription by oxidative stress.
    Shapira M; Segal E; Botstein D
    Mol Biol Cell; 2004 Dec; 15(12):5659-69. PubMed ID: 15371544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new yeast gene, HTR1, required for growth at high temperature, is needed for recovery from mating pheromone-induced G1 arrest.
    Kikuchi Y; Oka Y; Kobayashi M; Uesono Y; Toh-e A; Kikuchi A
    Mol Gen Genet; 1994 Oct; 245(1):107-16. PubMed ID: 7845352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Saccharomyces cerevisiae has an inducible response to menadione which differs from that to hydrogen peroxide.
    Flattery-O'Brien J; Collinson LP; Dawes IW
    J Gen Microbiol; 1993 Mar; 139(3):501-7. PubMed ID: 8473859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.