BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 9535832)

  • 1. Specific binding of a designed pyrrolidine abasic site analog to multiple DNA glycosylases.
    Schärer OD; Nash HM; Jiricny J; Laval J; Verdine GL
    J Biol Chem; 1998 Apr; 273(15):8592-7. PubMed ID: 9535832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of DNA glycosylase activity by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
    Darwanto A; Farrel A; Rogstad DK; Sowers LC
    Anal Biochem; 2009 Nov; 394(1):13-23. PubMed ID: 19607800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Base excision repair system targeting DNA adducts of trioxacarcin/LL-D49194 antibiotics for self-resistance.
    Chen X; Bradley NP; Lu W; Wahl KL; Zhang M; Yuan H; Hou XF; Eichman BF; Tang GL
    Nucleic Acids Res; 2022 Mar; 50(5):2417-2430. PubMed ID: 35191495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Natural Polymorphic Variants of DNA Polymerase β in DNA Repair.
    Kladova OA; Fedorova OS; Kuznetsov NA
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. dCas9 binding inhibits the initiation of base excision repair in vitro.
    Antony JS; Roberts SA; Wyrick JJ; Hinz JM
    DNA Repair (Amst); 2022 Jan; 109():103257. PubMed ID: 34847381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitors of DNA Glycosylases as Prospective Drugs.
    Mechetin GV; Endutkin AV; Diatlova EA; Zharkov DO
    Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32354123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of the base excision repair enzyme MBD4 by the small ubiquitin-like molecule SUMO1.
    Sannai M; Doneddu V; Giri V; Seeholzer S; Nicolas E; Yip SC; Bassi MR; Mancuso P; Cortellino S; Cigliano A; Lurie R; Ding H; Chernoff J; Sobol RW; Yen TJ; Bagella L; Bellacosa A
    DNA Repair (Amst); 2019 Oct; 82():102687. PubMed ID: 31476572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting Base Excision Repair Glycosylases with DNA Containing Transition State Mimics Prepared via Click Chemistry.
    Yuen PK; Green SA; Ashby J; Lay KT; Santra A; Chen X; Horvath MP; David SS
    ACS Chem Biol; 2019 Jan; 14(1):27-36. PubMed ID: 30500207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinguishing Specific and Nonspecific Complexes of Alkyladenine DNA Glycosylase.
    Taylor EL; Kesavan PM; Wolfe AE; O'Brien PJ
    Biochemistry; 2018 Jul; 57(30):4440-4454. PubMed ID: 29940097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defining the impact of sumoylation on substrate binding and catalysis by thymine DNA glycosylase.
    Coey CT; Drohat AC
    Nucleic Acids Res; 2018 Jun; 46(10):5159-5170. PubMed ID: 29660017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Search for DNA damage by human alkyladenine DNA glycosylase involves early intercalation by an aromatic residue.
    Hendershot JM; O'Brien PJ
    J Biol Chem; 2017 Sep; 292(39):16070-16080. PubMed ID: 28747435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3CAPS - a structural AP-site analogue as a tool to investigate DNA base excision repair.
    Schuermann D; Scheidegger SP; Weber AR; Bjørås M; Leumann CJ; Schär P
    Nucleic Acids Res; 2016 Mar; 44(5):2187-98. PubMed ID: 26733580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of base excision repair in maintaining the genetic and epigenetic integrity of CpG sites.
    Bellacosa A; Drohat AC
    DNA Repair (Amst); 2015 Aug; 32():33-42. PubMed ID: 26021671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic mechanism for the flipping and excision of 1,N(6)-ethenoadenine by AlkA.
    Taylor EL; O'Brien PJ
    Biochemistry; 2015 Jan; 54(3):898-908. PubMed ID: 25537480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical role of DNA intercalation in enzyme-catalyzed nucleotide flipping.
    Hendershot JM; O'Brien PJ
    Nucleic Acids Res; 2014 Nov; 42(20):12681-90. PubMed ID: 25324304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. E2-mediated small ubiquitin-like modifier (SUMO) modification of thymine DNA glycosylase is efficient but not selective for the enzyme-product complex.
    Coey CT; Fitzgerald ME; Maiti A; Reiter KH; Guzzo CM; Matunis MJ; Drohat AC
    J Biol Chem; 2014 May; 289(22):15810-9. PubMed ID: 24753249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A chemical and kinetic perspective on base excision repair of DNA.
    Schermerhorn KM; Delaney S
    Acc Chem Res; 2014 Apr; 47(4):1238-46. PubMed ID: 24646203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Profiling base excision repair glycosylases with synthesized transition state analogs.
    Chu AM; Fettinger JC; David SS
    Bioorg Med Chem Lett; 2011 Sep; 21(17):4969-72. PubMed ID: 21689934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic mechanism for the excision of hypoxanthine by Escherichia coli AlkA and evidence for binding to DNA ends.
    Zhao B; O'Brien PJ
    Biochemistry; 2011 May; 50(20):4350-9. PubMed ID: 21491902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substitution of active site tyrosines with tryptophan alters the free energy for nucleotide flipping by human alkyladenine DNA glycosylase.
    Hendershot JM; Wolfe AE; O'Brien PJ
    Biochemistry; 2011 Mar; 50(11):1864-74. PubMed ID: 21244040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.