These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 9535880)
1. Kinetic and thermodynamic studies of purine repressor binding to corepressor and operator DNA. Xu H; Moraitis M; Reedstrom RJ; Matthews KS J Biol Chem; 1998 Apr; 273(15):8958-64. PubMed ID: 9535880 [TBL] [Abstract][Full Text] [Related]
2. The X-ray structure of the PurR-guanine-purF operator complex reveals the contributions of complementary electrostatic surfaces and a water-mediated hydrogen bond to corepressor specificity and binding affinity. Schumacher MA; Glasfeld A; Zalkin H; Brennan RG J Biol Chem; 1997 Sep; 272(36):22648-53. PubMed ID: 9278422 [TBL] [Abstract][Full Text] [Related]
3. The role of lysine 55 in determining the specificity of the purine repressor for its operators through minor groove interactions. Glasfeld A; Koehler AN; Schumacher MA; Brennan RG J Mol Biol; 1999 Aug; 291(2):347-61. PubMed ID: 10438625 [TBL] [Abstract][Full Text] [Related]
4. Ion concentration and temperature dependence of DNA binding: comparison of PurR and LacI repressor proteins. Moraitis MI; Xu H; Matthews KS Biochemistry; 2001 Jul; 40(27):8109-17. PubMed ID: 11434780 [TBL] [Abstract][Full Text] [Related]
5. Structural characterization and corepressor binding of the Escherichia coli purine repressor. Choi KY; Zalkin H J Bacteriol; 1992 Oct; 174(19):6207-14. PubMed ID: 1400170 [TBL] [Abstract][Full Text] [Related]
6. Mutagenesis of amino acid residues required for binding of corepressors to the purine repressor. Choi KY; Lu F; Zalkin H J Biol Chem; 1994 Sep; 269(39):24066-72. PubMed ID: 7929058 [TBL] [Abstract][Full Text] [Related]
7. Escherichia coli purine repressor: key residues for the allosteric transition between active and inactive conformations and for interdomain signaling. Lu F; Brennan RG; Zalkin H Biochemistry; 1998 Nov; 37(45):15680-90. PubMed ID: 9843372 [TBL] [Abstract][Full Text] [Related]
8. Conformational changes of purine repressor DNA-binding domain upon complexation with DNA. Nagadoi A; Nakazawa K; Morikawa S; Nakamura H; Sampei G; Mizobuchi K; Yamamoto H; Schumacher MA; Brennan RG; Nishimura Y Nucleic Acids Symp Ser; 1995; (34):63-4. PubMed ID: 8841553 [TBL] [Abstract][Full Text] [Related]
9. The PurR binding site in the glyA promoter region of Escherichia coli. Steiert JG; Kubu C; Stauffer GV FEMS Microbiol Lett; 1992 Dec; 78(2-3):299-304. PubMed ID: 1490614 [TBL] [Abstract][Full Text] [Related]
10. Structural comparison of the free and DNA-bound forms of the purine repressor DNA-binding domain. Nagadoi A; Morikawa S; Nakamura H; Enari M; Kobayashi K; Yamamoto H; Sampei G; Mizobuchi K; Schumacher MA; Brennan RG Structure; 1995 Nov; 3(11):1217-24. PubMed ID: 8591032 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamics of the interactions of lac repressor with variants of the symmetric lac operator: effects of converting a consensus site to a non-specific site. Frank DE; Saecker RM; Bond JP; Capp MW; Tsodikov OV; Melcher SE; Levandoski MM; Record MT J Mol Biol; 1997 Apr; 267(5):1186-206. PubMed ID: 9150406 [TBL] [Abstract][Full Text] [Related]
12. Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by alpha helices. Schumacher MA; Choi KY; Zalkin H; Brennan RG Science; 1994 Nov; 266(5186):763-70. PubMed ID: 7973627 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of corepressor-mediated specific DNA binding by the purine repressor. Schumacher MA; Choi KY; Lu F; Zalkin H; Brennan RG Cell; 1995 Oct; 83(1):147-55. PubMed ID: 7553867 [TBL] [Abstract][Full Text] [Related]
14. Role of the purine repressor hinge sequence in repressor function. Choi KY; Zalkin H J Bacteriol; 1994 Mar; 176(6):1767-72. PubMed ID: 8132474 [TBL] [Abstract][Full Text] [Related]
15. Engineered disulfide linking the hinge regions within lactose repressor dimer increases operator affinity, decreases sequence selectivity, and alters allostery. Falcon CM; Matthews KS Biochemistry; 2001 Dec; 40(51):15650-9. PubMed ID: 11747440 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamic evaluation of binding interactions in the methionine repressor system of Escherichia coli using isothermal titration calorimetry. Hyre DE; Spicer LD Biochemistry; 1995 Mar; 34(10):3212-21. PubMed ID: 7880815 [TBL] [Abstract][Full Text] [Related]
17. Structural analysis of the purine repressor, an Escherichia coli DNA-binding protein. Schumacher MA; Macdonald JR; Björkman J; Mowbray SL; Brennan RG J Biol Chem; 1993 Jun; 268(17):12282-8. PubMed ID: 8509365 [TBL] [Abstract][Full Text] [Related]
18. Crystallization and preliminary X-ray analysis of an Escherichia coli purine repressor-hypoxanthine-DNA complex. Schumacher MA; Choi KY; Zalkin H; Brennan RG J Mol Biol; 1994 Sep; 242(3):302-5. PubMed ID: 8089849 [TBL] [Abstract][Full Text] [Related]
19. Cooperative and anticooperative effects in binding of the first and second plasmid Osym operators to a LacI tetramer: evidence for contributions of non-operator DNA binding by wrapping and looping. Levandoski MM; Tsodikov OV; Frank DE; Melcher SE; Saecker RM; Record MT J Mol Biol; 1996 Aug; 260(5):697-717. PubMed ID: 8709149 [TBL] [Abstract][Full Text] [Related]