These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 9535895)
1. Activity of cyclic AMP phosphodiesterases and adenylyl cyclase in peripheral nerve after crush and permanent transection injuries. Walikonis RS; Poduslo JF J Biol Chem; 1998 Apr; 273(15):9070-7. PubMed ID: 9535895 [TBL] [Abstract][Full Text] [Related]
2. The second messenger, cyclic AMP, is not sufficient for myelin gene induction in the peripheral nervous system. Poduslo JF; Walikonis RS; Domec MC; Berg CT; Holtz-Heppelmann CJ J Neurochem; 1995 Jul; 65(1):149-59. PubMed ID: 7540661 [TBL] [Abstract][Full Text] [Related]
3. Characterization of the cyclic nucleotide phosphodiesterase subtypes involved in the regulation of the L-type Ca2+ current in rat ventricular myocytes. Verde I; Vandecasteele G; Lezoualc'h F; Fischmeister R Br J Pharmacol; 1999 May; 127(1):65-74. PubMed ID: 10369457 [TBL] [Abstract][Full Text] [Related]
4. Challenge of human Jurkat T-cells with the adenylate cyclase activator forskolin elicits major changes in cAMP phosphodiesterase (PDE) expression by up-regulating PDE3 and inducing PDE4D1 and PDE4D2 splice variants as well as down-regulating a novel PDE4A splice variant. Erdogan S; Houslay MD Biochem J; 1997 Jan; 321 ( Pt 1)(Pt 1):165-75. PubMed ID: 9003416 [TBL] [Abstract][Full Text] [Related]
5. Changes in phosphodiesterase activity in the developing rat submandibular gland. Tanaka S; Shimooka S; Shimomura H Arch Oral Biol; 2002 Aug; 47(8):567-76. PubMed ID: 12221013 [TBL] [Abstract][Full Text] [Related]
6. Compartmentalization of cAMP signaling in mesangial cells by phosphodiesterase isozymes PDE3 and PDE4. Regulation of superoxidation and mitogenesis. Chini CC; Grande JP; Chini EN; Dousa TP J Biol Chem; 1997 Apr; 272(15):9854-9. PubMed ID: 9092521 [TBL] [Abstract][Full Text] [Related]
7. Evidence for the activity of five adenosine-3',5'-monophosphate-degrading phosphodiesterase isozymes in the adult rat neocortex. Sutor B; Mantell K; Bacher B Neurosci Lett; 1998 Aug; 252(1):57-60. PubMed ID: 9756358 [TBL] [Abstract][Full Text] [Related]
8. Regulatory roles of adenylate cyclase and cyclic nucleotide phosphodiesterases 1 and 4 in interleukin-13 production by activated human T cells. Kanda N; Watanabe S Biochem Pharmacol; 2001 Aug; 62(4):495-507. PubMed ID: 11448460 [TBL] [Abstract][Full Text] [Related]
9. Induction of Ca2+/calmodulin-stimulated cyclic AMP phosphodiesterase (PDE1) activity in Chinese hamster ovary cells (CHO) by phorbol 12-myristate 13-acetate and by the selective overexpression of protein kinase C isoforms. Spence S; Rena G; Sweeney G; Houslay MD Biochem J; 1995 Sep; 310 ( Pt 3)(Pt 3):975-82. PubMed ID: 7575435 [TBL] [Abstract][Full Text] [Related]
10. Vascular endothelial cell cyclic nucleotide phosphodiesterases and regulated cell migration: implications in angiogenesis. Netherton SJ; Maurice DH Mol Pharmacol; 2005 Jan; 67(1):263-72. PubMed ID: 15475573 [TBL] [Abstract][Full Text] [Related]
11. Presence of cyclic nucleotide phosphodiesterases PDE1A, existing as a stable complex with calmodulin, and PDE3A in human spermatozoa. Lefièvre L; de Lamirande E; Gagnon C Biol Reprod; 2002 Aug; 67(2):423-30. PubMed ID: 12135876 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of PDE3B augments PDE4 inhibitor-induced apoptosis in a subset of patients with chronic lymphocytic leukemia. Moon E; Lee R; Near R; Weintraub L; Wolda S; Lerner A Clin Cancer Res; 2002 Feb; 8(2):589-95. PubMed ID: 11839681 [TBL] [Abstract][Full Text] [Related]
13. Multifactorial regulation of pituitary adenylate cyclase-activating polypeptide (PACAP)-induced production of cyclic AMP in ATT-20 corticotrophs: major involvement of Rolipram-sensitive and insensitive phosphodiesterases. Koch B; Lutz-Bucher B Mol Cell Endocrinol; 1995 Jul; 112(1):27-34. PubMed ID: 7589782 [TBL] [Abstract][Full Text] [Related]
14. "cAMP-specific" phosphodiesterase contributes to cGMP degradation in cerebellar cells exposed to nitric oxide. Bellamy TC; Garthwaite J Mol Pharmacol; 2001 Jan; 59(1):54-61. PubMed ID: 11125024 [TBL] [Abstract][Full Text] [Related]
15. Cyclic AMP-specific phosphodiesterase inhibitor rolipram and RO-20-1724 promoted apoptosis in HL60 promyelocytic leukemic cells via cyclic AMP-independent mechanism. Zhu WH; Majluf-Cruz A; Omburo GA Life Sci; 1998; 63(4):265-74. PubMed ID: 9698035 [TBL] [Abstract][Full Text] [Related]
16. Functional plasticity of cyclic AMP hydrolysis in rat adenohypophysial corticotroph cells. Ang KL; Antoni FA Cell Signal; 2002 May; 14(5):445-52. PubMed ID: 11882389 [TBL] [Abstract][Full Text] [Related]
17. Stimulation of beta adrenoceptors in a human monocyte cell line (U937) up-regulates cyclic AMP-specific phosphodiesterase activity. Torphy TJ; Zhou HL; Cieslinski LB J Pharmacol Exp Ther; 1992 Dec; 263(3):1195-205. PubMed ID: 1335058 [TBL] [Abstract][Full Text] [Related]
18. Hydrolysis of N-methyl-D-aspartate receptor-stimulated cAMP and cGMP by PDE4 and PDE2 phosphodiesterases in primary neuronal cultures of rat cerebral cortex and hippocampus. Suvarna NU; O'Donnell JM J Pharmacol Exp Ther; 2002 Jul; 302(1):249-56. PubMed ID: 12065724 [TBL] [Abstract][Full Text] [Related]
19. Isoprenaline induction of cAMP-phosphodiesterase in guinea-pig macrophages occurs in the presence, but not in the absence, of the phosphodiesterase type IV inhibitor rolipram. Kochetkova M; Burns FM; Souness JE Biochem Pharmacol; 1995 Dec; 50(12):2033-8. PubMed ID: 8849330 [TBL] [Abstract][Full Text] [Related]
20. Identification of substrate specificity determinants in human cAMP-specific phosphodiesterase 4A by single-point mutagenesis. Richter W; Unciuleac L; Hermsdorf T; Kronbach T; Dettmer D Cell Signal; 2001 Mar; 13(3):159-67. PubMed ID: 11282454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]