BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 9535920)

  • 1. Estrogen regulation of the apolipoprotein AI gene promoter through transcription cofactor sharing.
    Harnish DC; Evans MJ; Scicchitano MS; Bhat RA; Karathanasis SK
    J Biol Chem; 1998 Apr; 273(15):9270-8. PubMed ID: 9535920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. E1A represses apolipoprotein AI enhancer activity in liver cells through a pRb- and CBP-independent pathway.
    Kilbourne EJ; Evans MJ; Karathanasis SK
    Nucleic Acids Res; 1998 Apr; 26(7):1761-8. PubMed ID: 9512550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of apolipoprotein AI gene expression through synergistic interactions between hepatocyte nuclear factors 3 and 4.
    Harnish DC; Malik S; Kilbourne E; Costa R; Karathanasis SK
    J Biol Chem; 1996 Jun; 271(23):13621-8. PubMed ID: 8662915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intestinal apolipoprotein AI gene transcription is regulated by multiple distinct DNA elements and is synergistically activated by the orphan nuclear receptor, hepatocyte nuclear factor 4.
    Ginsburg GS; Ozer J; Karathanasis SK
    J Clin Invest; 1995 Jul; 96(1):528-38. PubMed ID: 7615825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aryl hydrocarbon receptor modulation of estrogen receptor α-mediated gene regulation by a multimeric chromatin complex involving the two receptors and the coregulator RIP140.
    Madak-Erdogan Z; Katzenellenbogen BS
    Toxicol Sci; 2012 Feb; 125(2):401-11. PubMed ID: 22071320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repression by ARP-1 sensitizes apolipoprotein AI gene responsiveness to RXR alpha and retinoic acid.
    Widom RL; Rhee M; Karathanasis SK
    Mol Cell Biol; 1992 Aug; 12(8):3380-9. PubMed ID: 1321332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of apolipoprotein AI gene transcription by the liver-enriched factor HNF-3.
    Harnish DC; Malik S; Karathanasis SK
    J Biol Chem; 1994 Nov; 269(45):28220-6. PubMed ID: 7961760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of human apolipoprotein A-I gene expression by gramoxone.
    Cuthbert C; Wang Z; Zhang X; Tam SP
    J Biol Chem; 1997 Jun; 272(23):14954-60. PubMed ID: 9169468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TFIIB-directed transcriptional activation by the orphan nuclear receptor hepatocyte nuclear factor 4.
    Malik S; Karathanasis SK
    Mol Cell Biol; 1996 Apr; 16(4):1824-31. PubMed ID: 8657158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. cis-acting elements and transcription factors involved in the promoter activity of the human factor VIII gene.
    Figueiredo MS; Brownlee GG
    J Biol Chem; 1995 May; 270(20):11828-38. PubMed ID: 7744832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional repression of apolipoprotein AI gene expression by orphan receptor ARP-1.
    Ge R; Rhee M; Malik S; Karathanasis SK
    J Biol Chem; 1994 May; 269(18):13185-92. PubMed ID: 8175747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of estrogen receptor activation of the prolactin enhancer/promoter by antagonistic activation function-2-interacting proteins.
    Schaufele F
    Mol Endocrinol; 1999 Jun; 13(6):935-45. PubMed ID: 10379892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional regulation of the apoAI gene by hepatic nuclear factor 4 in yeast.
    Fuernkranz HA; Wang Y; Karathanasis SK; Mak P
    Nucleic Acids Res; 1994 Dec; 22(25):5665-71. PubMed ID: 7838720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hepatocyte nuclear factor 4 inhibits the activity of site A from the rat apolipoprotein AI gene.
    Murao K; Bassyouni H; Taylor AH; Wanke IE; Wong NC
    Biochemistry; 1997 Jan; 36(2):301-6. PubMed ID: 9003181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zinc depletion reduced Egr-1 and HNF-3beta expression and apolipoprotein A-I promoter activity in Hep G2 cells.
    Cui L; Schoene NW; Zhu L; Fanzo JC; Alshatwi A; Lei KY
    Am J Physiol Cell Physiol; 2002 Aug; 283(2):C623-30. PubMed ID: 12107072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-directed mutagenesis of hepatocyte nuclear factor (HNF) binding sites in the mouse transthyretin (TTR) promoter reveal synergistic interactions with its enhancer region.
    Costa RH; Grayson DR
    Nucleic Acids Res; 1991 Aug; 19(15):4139-45. PubMed ID: 1870969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An indirect negative autoregulatory mechanism involved in hepatocyte nuclear factor-1 gene expression.
    Kritis AA; Ktistaki E; Barda D; Zannis VI; Talianidis I
    Nucleic Acids Res; 1993 Dec; 21(25):5882-9. PubMed ID: 8290348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sp and GATA factors are critical for Apolipoprotein AI downstream enhancer activity in human HepG2 cells.
    Ivanov GS; Kater JM; Jha SH; Stutius EA; Sabharwal R; Tricarico MD; Ginsburg GS; Ozer JS
    Gene; 2003 Dec; 323():31-42. PubMed ID: 14659877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclooxygenase inhibition is associated with downregulation of apolipoprotein AI promoter activity in cultured hepatoma cell line HepG2.
    Horani MH; Gobal F; Haas MJ; Wong NC; Mooradian AD
    Metabolism; 2004 Feb; 53(2):174-81. PubMed ID: 14767868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cocoa flavanol metabolites activate HNF-3β, Sp1, and NFY-mediated transcription of apolipoprotein AI in human cells.
    Oleaga C; Ciudad CJ; Izquierdo-Pulido M; Noé V
    Mol Nutr Food Res; 2013 Jun; 57(6):986-95. PubMed ID: 23293065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.