These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 9535926)

  • 1. Refolding of bacteriorhodopsin from expressed polypeptide fragments.
    Marti T
    J Biol Chem; 1998 Apr; 273(15):9312-22. PubMed ID: 9535926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary structure of bacteriorhodopsin fragments. External sequence constraints specify the conformation of transmembrane helices.
    Lüneberg J; Widmann M; Dathe M; Marti T
    J Biol Chem; 1998 Oct; 273(44):28822-30. PubMed ID: 9786882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function in bacteriorhodopsin: the effect of the interhelical loops on the protein folding kinetics.
    Allen SJ; Kim JM; Khorana HG; Lu H; Booth PJ
    J Mol Biol; 2001 Apr; 308(2):423-35. PubMed ID: 11327777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility.
    Etzkorn M; Raschle T; Hagn F; Gelev V; Rice AJ; Walz T; Wagner G
    Structure; 2013 Mar; 21(3):394-401. PubMed ID: 23415558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refolding of bacteriorhodopsin. Protease V8 fragmentation and chromophore reconstitution from proteolytic V8 fragments.
    Sigrist H; Wenger RH; Kislig E; Wüthrich M
    Eur J Biochem; 1988 Oct; 177(1):125-33. PubMed ID: 3181151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobic amino acids in the retinal-binding pocket of bacteriorhodopsin.
    Greenhalgh DA; Farrens DL; Subramaniam S; Khorana HG
    J Biol Chem; 1993 Sep; 268(27):20305-11. PubMed ID: 8376389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-function studies of bacteriorhodopsin XV. Effects of deletions in loops B-C and E-F on bacteriorhodopsin chromophore and structure.
    Gilles-Gonzalez MA; Engelman DM; Khorana HG
    J Biol Chem; 1991 May; 266(13):8545-50. PubMed ID: 2022666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstitution of bacteriorhodopsin from a mixture of a proteinase V8 fragment and two synthetic peptides.
    Ozawa S; Hayashi R; Masuda A; Iio T; Takahashi S
    Biochim Biophys Acta; 1997 Jan; 1323(1):145-53. PubMed ID: 9030221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of bacteriorhodopsin derivatives constructed by insertion of an exogenous epitope into extra-membrane loops.
    Teufel M; Pompejus M; Humbel B; Friedrich K; Fritz HJ
    EMBO J; 1993 Sep; 12(9):3399-408. PubMed ID: 7504623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peptide building blocks from bacteriorhodopsin: isolation and physicochemical characterization of two individual transmembrane segments.
    Wuethrich M; Sigrist H
    J Protein Chem; 1990 Apr; 9(2):201-7. PubMed ID: 2386614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The final stages of folding of the membrane protein bacteriorhodopsin occur by kinetically indistinguishable parallel folding paths that are mediated by pH.
    Lu H; Booth PJ
    J Mol Biol; 2000 May; 299(1):233-43. PubMed ID: 10860735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacteriorhodopsin can be refolded from two independently stable transmembrane helices and the complementary five-helix fragment.
    Kahn TW; Engelman DM
    Biochemistry; 1992 Jul; 31(26):6144-51. PubMed ID: 1627558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of the carboxyl-terminal peptide does not affect refolding or function of bacteriorhodopsin as a light-dependent proton pump.
    Liao MJ; Khorana HG
    J Biol Chem; 1984 Apr; 259(7):4194-9. PubMed ID: 6707000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proline residues in transmembrane alpha helices affect the folding of bacteriorhodopsin.
    Lu H; Marti T; Booth PJ
    J Mol Biol; 2001 Apr; 308(2):437-46. PubMed ID: 11327778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refolding of bacteriorhodopsin in lipid bilayers. A thermodynamically controlled two-stage process.
    Popot JL; Gerchman SE; Engelman DM
    J Mol Biol; 1987 Dec; 198(4):655-76. PubMed ID: 3430624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folding and assembly of phage P22 tailspike endorhamnosidase lacking the N-terminal, head-binding domain.
    Danner M; Fuchs A; Miller S; Seckler R
    Eur J Biochem; 1993 Aug; 215(3):653-61. PubMed ID: 8354271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic evidence for an obligatory intermediate in the folding of the membrane protein bacteriorhodopsin.
    Farooq A
    Biochemistry; 1998 Oct; 37(43):15170-6. PubMed ID: 9790681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermediates in the assembly of bacteriorhodopsin investigated by time-resolved absorption spectroscopy.
    Booth PJ; Farooq A
    Eur J Biochem; 1997 Jun; 246(3):674-80. PubMed ID: 9219525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and thermal stability of monomeric bacteriorhodopsin in mixed phospholipid/detergent micelles.
    Brouillette CG; McMichens RB; Stern LJ; Khorana HG
    Proteins; 1989; 5(1):38-46. PubMed ID: 2748571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.