These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 9535963)

  • 1. Biophysical characterization and functional consequences of a slowly inactivating potassium current in neostriatal neurons.
    Gabel LA; Nisenbaum ES
    J Neurophysiol; 1998 Apr; 79(4):1989-2002. PubMed ID: 9535963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of a persistent potassium current in neostriatal neurons.
    Nisenbaum ES; Wilson CJ; Foehring RC; Surmeier DJ
    J Neurophysiol; 1996 Aug; 76(2):1180-94. PubMed ID: 8871229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of a slowly inactivating potassium current to the transition to firing of neostriatal spiny projection neurons.
    Nisenbaum ES; Xu ZC; Wilson CJ
    J Neurophysiol; 1994 Mar; 71(3):1174-89. PubMed ID: 8201411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons.
    Nisenbaum ES; Wilson CJ
    J Neurosci; 1995 Jun; 15(6):4449-63. PubMed ID: 7790919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kv1.2-containing K+ channels regulate subthreshold excitability of striatal medium spiny neurons.
    Shen W; Hernandez-Lopez S; Tkatch T; Held JE; Surmeier DJ
    J Neurophysiol; 2004 Mar; 91(3):1337-49. PubMed ID: 13679409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional properties of a slowly inactivating potassium current in guinea pig dorsal lateral geniculate relay neurons.
    McCormick DA
    J Neurophysiol; 1991 Oct; 66(4):1176-89. PubMed ID: 1761979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of voltage-sensitive Na+ and K+ currents recorded from acutely dissociated pelvic ganglion neurons of the adult rat.
    Yoshimura N; De Groat WC
    J Neurophysiol; 1996 Oct; 76(4):2508-21. PubMed ID: 8899623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective blockade of a slowly inactivating potassium current in striatal neurons by (+/-) 6-chloro-APB hydrobromide (SKF82958).
    Nisenbaum ES; Mermelstein PG; Wilson CJ; Surmeier DJ
    Synapse; 1998 Jul; 29(3):213-24. PubMed ID: 9635891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potassium currents and membrane excitability of neurons in the rat's dorsal nucleus of the lateral lemniscus.
    Fu XW; Wu SH; Brezden BL; Kelly JB
    J Neurophysiol; 1996 Aug; 76(2):1121-32. PubMed ID: 8871225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biophysical properties and slow voltage-dependent inactivation of a sustained sodium current in entorhinal cortex layer-II principal neurons: a whole-cell and single-channel study.
    Magistretti J; Alonso A
    J Gen Physiol; 1999 Oct; 114(4):491-509. PubMed ID: 10498669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms for signal transformation in lemniscal auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    J Neurophysiol; 1996 Dec; 76(6):3597-608. PubMed ID: 8985860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium conductances and their role in the firing behavior of neonatal rat hypoglossal motoneurons.
    Viana F; Bayliss DA; Berger AJ
    J Neurophysiol; 1993 Jun; 69(6):2137-49. PubMed ID: 8394413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct and indirect actions of dopamine on the membrane potential in medium spiny neurons of the mouse neostriatum.
    Yasumoto S; Tanaka E; Hattori G; Maeda H; Higashi H
    J Neurophysiol; 2002 Mar; 87(3):1234-43. PubMed ID: 11877497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of action potentials and their underlying outward currents in rat taste receptor cells.
    Chen Y; Sun XD; Herness S
    J Neurophysiol; 1996 Feb; 75(2):820-31. PubMed ID: 8714655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subthreshold membrane resonance in neocortical neurons.
    Hutcheon B; Miura RM; Puil E
    J Neurophysiol; 1996 Aug; 76(2):683-97. PubMed ID: 8871191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances.
    Cepeda C; Colwell CS; Itri JN; Chandler SH; Levine MS
    J Neurophysiol; 1998 Jan; 79(1):82-94. PubMed ID: 9425179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model of the T-type calcium current and the low-threshold spike in thalamic neurons.
    Wang XJ; Rinzel J; Rogawski MA
    J Neurophysiol; 1991 Sep; 66(3):839-50. PubMed ID: 1661326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory action of dopamine involves a subthreshold Cs(+)-sensitive conductance in neostriatal neurons.
    Pacheco-Cano MT; Bargas J; Hernández-López S; Tapia D; Galarraga E
    Exp Brain Res; 1996 Jul; 110(2):205-11. PubMed ID: 8836685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage-dependent facilitation of calcium channels in rat neostriatal neurons.
    Song WJ; Surmeier DJ
    J Neurophysiol; 1996 Oct; 76(4):2290-306. PubMed ID: 8899604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-gated potassium channels activated during action potentials in layer V neocortical pyramidal neurons.
    Kang J; Huguenard JR; Prince DA
    J Neurophysiol; 2000 Jan; 83(1):70-80. PubMed ID: 10634854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.