These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 9536069)

  • 1. Dim-red-light-induced increase in polar auxin transport in cucumber seedlings. I. Development Of altered capacity, velocity, and response to inhibitors.
    Shinkle JR; Kadakia R; Jones AM
    Plant Physiol; 1998 Apr; 116(4):1505-13. PubMed ID: 9536069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative photobiology of growth responses to two UV-B wavebands and UV-C in dim-red-light- and white-light-grown cucumber (Cucumis sativus) seedlings: physiological evidence for photoreactivation.
    Shinkle JR; Derickson DL; Barnes PW
    Photochem Photobiol; 2005; 81(5):1069-74. PubMed ID: 15960589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gravity-induced modification of auxin transport and distribution for peg formation in cucumber seedlings: possible roles for CS-AUX1 and CS-PIN1.
    Kamada M; Yamasaki S; Fujii N; Higashitani A; Takahashi H
    Planta; 2003 Nov; 218(1):15-26. PubMed ID: 12905024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graviresponse and its regulation from the aspect of molecular levels in higher plants: growth and development, and auxin polar transport in etiolated pea seedlings under microgravity.
    Miyamoto K; Hoshino T; Hitotsubashi R; Tanimoto E; Ueda J
    Biol Sci Space; 2003 Oct; 17(3):234-5. PubMed ID: 14676393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis.
    Jensen PJ; Hangarter RP; Estelle M
    Plant Physiol; 1998 Feb; 116(2):455-62. PubMed ID: 9489005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light interacts with auxin during leaf elongation and leaf angle development in young corn seedlings.
    Fellner M; Horton LA; Cocke AE; Stephens NR; Ford ED; Van Volkenburgh E
    Planta; 2003 Jan; 216(3):366-76. PubMed ID: 12520327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of basipetal auxin transport and lateral auxin movement in rooting and growth of etiolated lupin hypocotyls.
    López Nicolás JI; Acosta M; Sánchez-Bravo J
    Physiol Plant; 2004 Jun; 121(2):294-304. PubMed ID: 15153197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RCN1-regulated phosphatase activity and EIN2 modulate hypocotyl gravitropism by a mechanism that does not require ethylene signaling.
    Muday GK; Brady SR; Argueso C; Deruère J; Kieber JJ; DeLong A
    Plant Physiol; 2006 Aug; 141(4):1617-29. PubMed ID: 16798939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin.
    Vandenbussche F; Smalle J; Le J; Saibo NJ; De Paepe A; Chaerle L; Tietz O; Smets R; Laarhoven LJ; Harren FJ; Van Onckelen H; Palme K; Verbelen JP; Van Der Straeten D
    Plant Physiol; 2003 Mar; 131(3):1228-38. PubMed ID: 12644673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gravistimulation changes the accumulation pattern of the CsPIN1 auxin efflux facilitator in the endodermis of the transition zone in cucumber seedlings.
    Watanabe C; Fujii N; Yanai K; Hotta T; Kim DH; Kamada M; Sasagawa-Saito Y; Nishimura T; Koshiba T; Miyazawa Y; Kim KM; Takahashi H
    Plant Physiol; 2012 Jan; 158(1):239-51. PubMed ID: 22065422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential accumulation of the mRNA of the auxin-repressed gene CsGRP1 and the auxin-induced peg formation during gravimorphogenesis of cucumber seedlings.
    Shimizu M; Suzuki K; Miyazawa Y; Fujii N; Takahashi H
    Planta; 2006 Dec; 225(1):13-22. PubMed ID: 16773375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Requirement for the gravity-controlled transport of auxin for a negative gravitropic response of epicotyls in the early growth stage of etiolated pea seedlings.
    Hoshino T; Miyamoto K; Ueda J
    Plant Cell Physiol; 2006 Nov; 47(11):1496-508. PubMed ID: 17008444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comparative Study of Carrier Participation in the Transport of 2,3,5-triiodobenzoic acid, indole-3-acetic acid, and 2,4-dichlorophenoxyacetic acid by Cucurbita pepo L. Hypocotyl Segments.
    Depta H; Rubery PH
    J Plant Physiol; 1984 Aug; 115(5):371-87. PubMed ID: 23194793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The expression of genes coding for auxin carriers in different tissues and along the organ can explain variations in auxin transport and the growth pattern in etiolated lupin hypocotyls.
    Oliveros-Valenzuela MR; Reyes D; Sánchez-Bravo J; Acosta M; Nicolás C
    Planta; 2007 Dec; 227(1):133-42. PubMed ID: 17713784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation to dim-red light leads to a nongradient pattern of stem elongation in cucumis seedlings.
    Shinkle JR; Sooudi SK; Jones RL
    Plant Physiol; 1992 Jul; 99(3):808-11. PubMed ID: 16669004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auxin represses stomatal development in dark-grown seedlings via Aux/IAA proteins.
    Balcerowicz M; Ranjan A; Rupprecht L; Fiene G; Hoecker U
    Development; 2014 Aug; 141(16):3165-76. PubMed ID: 25063454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light differentially regulates the expression of two members of the auxin-induced 1-aminocyclopropane-1-carboxylate synthase gene family in mung bean (Vigna radiata L.) seedlings.
    Joo S; Park KY; Kim WT
    Planta; 2004 Apr; 218(6):976-88. PubMed ID: 14727113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of light on the gravimorphogenesis of cucumber seedlings.
    Saito Y; Fujii N; Takahashi H
    Biol Sci Space; 2003 Oct; 17(3):181-2. PubMed ID: 14676363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auxin concentration/growth relationship for Avena coleoptile sections from seedlings grown in complete darkness.
    Shinkle JR; Briggs WR
    Plant Physiol; 1984 Feb; 74(2):335-9. PubMed ID: 16663419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A role for ABCB19-mediated polar auxin transport in seedling photomorphogenesis mediated by cryptochrome 1 and phytochrome B.
    Wu G; Cameron JN; Ljung K; Spalding EP
    Plant J; 2010 Apr; 62(2):179-91. PubMed ID: 20088903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.