BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 9536350)

  • 1. Presbyopia and the optical changes in the human crystalline lens with age.
    Glasser A; Campbell MC
    Vision Res; 1998 Jan; 38(2):209-29. PubMed ID: 9536350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia.
    Glasser A; Campbell MC
    Vision Res; 1999 Jun; 39(11):1991-2015. PubMed ID: 10343784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer refilling of presbyopic human lenses in vitro restores the ability to undergo accommodative changes.
    Koopmans SA; Terwee T; Barkhof J; Haitjema HJ; Kooijman AC
    Invest Ophthalmol Vis Sci; 2003 Jan; 44(1):250-7. PubMed ID: 12506082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-related response of human lenses to stretching forces.
    Pierscionek BK
    Exp Eye Res; 1995 Mar; 60(3):325-32. PubMed ID: 7789412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optomechanical response of human and monkey lenses in a lens stretcher.
    Manns F; Parel JM; Denham D; Billotte C; Ziebarth N; Borja D; Fernandez V; Aly M; Arrieta E; Ho A; Holden B
    Invest Ophthalmol Vis Sci; 2007 Jul; 48(7):3260-8. PubMed ID: 17591897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relation between injected volume and optical parameters in refilled isolated porcine lenses.
    Koopmans SA; Terwee T; Haitjema HJ; Deuring H; Aarle S; Kooijman AC
    Ophthalmic Physiol Opt; 2004 Nov; 24(6):572-9. PubMed ID: 15491485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model of accommodation: contributions of lens geometry and mechanical properties to the development of presbyopia.
    Van de Sompel D; Kunkel GJ; Hersh PS; Smits AJ
    J Cataract Refract Surg; 2010 Nov; 36(11):1960-71. PubMed ID: 21029906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in monkey crystalline lens spherical aberration during simulated accommodation in a lens stretcher.
    Maceo Heilman B; Manns F; de Castro A; Durkee H; Arrieta E; Marcos S; Parel JM
    Invest Ophthalmol Vis Sci; 2015 Feb; 56(3):1743-50. PubMed ID: 25670492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental protocols for ex vivo lens stretching tests to investigate the biomechanics of the human accommodation apparatus.
    Pinilla Cortés L; Burd HJ; Montenegro GA; D'Antin JC; Mikielewicz M; Barraquer RI; Michael R
    Invest Ophthalmol Vis Sci; 2015 May; 56(5):2926-32. PubMed ID: 26024078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pig lenses in a lens stretcher: implications for presbyopia treatment.
    Kammel R; Ackermann R; Mai T; Damm C; Nolte S
    Optom Vis Sci; 2012 Jun; 89(6):908-15. PubMed ID: 22561204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A physiological model to measure effects of age on lenticular accommodation and spherical aberration in chickens.
    Choh V; Sivak JG; Meriney SD
    Invest Ophthalmol Vis Sci; 2002 Jan; 43(1):92-8. PubMed ID: 11773018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Presbyopia, accommodation, and the mature catenary.
    Coleman DJ; Fish SK
    Ophthalmology; 2001 Sep; 108(9):1544-51. PubMed ID: 11535447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extralenticular and lenticular aspects of accommodation and presbyopia in human versus monkey eyes.
    Croft MA; McDonald JP; Katz A; Lin TL; Lütjen-Drecoll E; Kaufman PL
    Invest Ophthalmol Vis Sci; 2013 Jul; 54(7):5035-48. PubMed ID: 23745002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Change in the accommodative force on the lens of the human eye with age.
    Hermans EA; Dubbelman M; van der Heijde GL; Heethaar RM
    Vision Res; 2008 Jan; 48(1):119-26. PubMed ID: 18054980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Change in shape of the aging human crystalline lens with accommodation.
    Dubbelman M; Van der Heijde GL; Weeber HA
    Vision Res; 2005 Jan; 45(1):117-32. PubMed ID: 15571742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-dependence of the optomechanical responses of ex vivo human lenses from India and the USA, and the force required to produce these in a lens stretcher: the similarity to in vivo disaccommodation.
    Augusteyn RC; Mohamed A; Nankivil D; Veerendranath P; Arrieta E; Taneja M; Manns F; Ho A; Parel JM
    Vision Res; 2011 Jul; 51(14):1667-78. PubMed ID: 21658404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accommodation and presbyopia.
    Atchison DA
    Ophthalmic Physiol Opt; 1995 Jul; 15(4):255-72. PubMed ID: 7667018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical analysis of the accommodative apparatus in primates.
    Ehrmann K; Ho A; Parel JM
    Clin Exp Optom; 2008 May; 91(3):302-12. PubMed ID: 18279413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presbyopia: Effectiveness of correction strategies.
    Wolffsohn JS; Davies LN
    Prog Retin Eye Res; 2019 Jan; 68():124-143. PubMed ID: 30244049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic aspects of accommodation: age and presbyopia.
    Schachar RA
    Vision Res; 2004; 44(19):2313; author reply 2315-6. PubMed ID: 15208016
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 23.