These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 9536371)

  • 1. Rod pigment and rod noise in the European toad Bufo bufo.
    Fyhrquist N; Govardovskii V; Leibrock C; Reuter T
    Vision Res; 1998 Feb; 38(4):483-6. PubMed ID: 9536371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature effects on spectral properties of red and green rods in toad retina.
    Ala-Laurila P; Saarinen P; Albert R; Koskelainen A; Donner K
    Vis Neurosci; 2002; 19(6):781-92. PubMed ID: 12688672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ganglion cell performance at absolute threshold in toad retina: effects of dark events in rods.
    Copenhagen DR; Donner K; Reuter T
    J Physiol; 1987 Dec; 393():667-80. PubMed ID: 3128660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why do green rods of frog and toad retinas look green?
    Govardovskii VI; Reuter T
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Sep; 200(9):823-35. PubMed ID: 25015297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dark adaptation of toad rod photoreceptors following small bleaches.
    Leibrock CS; Reuter T; Lamb TD
    Vision Res; 1994 Nov; 34(21):2787-800. PubMed ID: 7975314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromophore switch from 11-cis-dehydroretinal (A2) to 11-cis-retinal (A1) decreases dark noise in salamander red rods.
    Ala-Laurila P; Donner K; Crouch RK; Cornwall MC
    J Physiol; 2007 Nov; 585(Pt 1):57-74. PubMed ID: 17884920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signal transmission through the dark-adapted retina of the toad (Bufo marinus). Gain, convergence, and signal/noise.
    Copenhagen DR; Hemilä S; Reuter T
    J Gen Physiol; 1990 Apr; 95(4):717-32. PubMed ID: 2110968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weber and noise adaptation in the retina of the toad Bufo marinus.
    Donner K; Copenhagen DR; Reuter T
    J Gen Physiol; 1990 Apr; 95(4):733-53. PubMed ID: 2110969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The frequency of isomerization-like 'dark' events in rhodopsin and porphyropsin rods of the bull-frog retina.
    Donner K; Firsov ML; Govardovskii VI
    J Physiol; 1990 Sep; 428():673-92. PubMed ID: 2231428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model of Weber and noise gain control in the retina of the toad Bufo marinus.
    Rudd ME; Brown LG
    Vision Res; 1997 Sep; 37(17):2433-53. PubMed ID: 9381679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lateral diffusion of visual pigments in toad (Bufo marinus) rods and in catfish (Ictalurus punctatus) cones.
    Gupta BD; Williams TP
    J Physiol; 1990 Nov; 430():483-96. PubMed ID: 2128335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature dependence of dark-adapted sensitivity and light-adaptation in photoreceptors with A1 visual pigments: a comparison of frog L-cones and rods.
    Heikkinen H; Nymark S; Donner K; Koskelainen A
    Vision Res; 2009 Jul; 49(14):1717-28. PubMed ID: 19348836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response univariance in bull-frog rods with two visual pigments.
    Firsov ML; Govardovskii VI; Donner K
    Vision Res; 1994 Apr; 34(7):839-47. PubMed ID: 8160397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH and rate of "dark" events in toad retinal rods: test of a hypothesis on the molecular origin of photoreceptor noise.
    Firsov ML; Donner K; Govardovskii VI
    J Physiol; 2002 Mar; 539(Pt 3):837-46. PubMed ID: 11897853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dark noise in the outer segment membrane current of green rod photoreceptors from toad retina.
    Matthews G
    J Physiol; 1984 Apr; 349():607-18. PubMed ID: 6429322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light responses and light adaptation in rat retinal rods at different temperatures.
    Nymark S; Heikkinen H; Haldin C; Donner K; Koskelainen A
    J Physiol; 2005 Sep; 567(Pt 3):923-38. PubMed ID: 16037091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular basis of dark adaptation in rod photoreceptors.
    Leibrock CS; Reuter T; Lamb TD
    Eye (Lond); 1998; 12 ( Pt 3b)():511-20. PubMed ID: 9775211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated cAMP improves signal-to-noise ratio in amphibian rod photoreceptors.
    Astakhova LA; Nikolaeva DA; Fedotkina TV; Govardovskii VI; Firsov ML
    J Gen Physiol; 2017 Jul; 149(7):689-701. PubMed ID: 28611079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rod phototransduction determines the trade-off of temporal integration and speed of vision in dark-adapted toads.
    Haldin C; Nymark S; Aho AC; Koskelainen A; Donner K
    J Neurosci; 2009 May; 29(18):5716-25. PubMed ID: 19420240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of hydroxylamine on photon-like events during dark adaptation in toad rod photoreceptors.
    Leibrock CS; Lamb TD
    J Physiol; 1997 May; 501 ( Pt 1)(Pt 1):97-109. PubMed ID: 9174997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.