These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 9536861)

  • 1. Prediction of the chemical composition of lamb carcasses from multi-frequency impedance data.
    Hegarty RS; McPhee MJ; Oddy VH; Thomas BJ; Ward LC
    Br J Nutr; 1998 Feb; 79(2):169-76. PubMed ID: 9536861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the composition of the soft tissue in lamb carcasses with bioimpedance and accessory measures.
    Moro AB; Galvani DB; Montanholi YR; Bertemes-Filho P; Venturini RS; Martins AA; da Silva LP; Pires CC
    Meat Sci; 2020 Nov; 169():108192. PubMed ID: 32485563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of lamb carcass composition by impedance spectroscopy.
    Altmann M; Pliquett U; Suess R; von Borell E
    J Anim Sci; 2004 Mar; 82(3):816-25. PubMed ID: 15032439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of bioelectrical impedance analysis in prediction of light kid carcass and muscle chemical composition.
    Silva SR; Afonso J; Monteiro A; Morais R; Cabo A; Batista AC; Guedes CM; Teixeira A
    Animal; 2018 Jun; 12(6):1324-1330. PubMed ID: 29039298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioelectrical impedance analysis for the prediction of fat-free mass in lambs and lamb carcasses.
    Berg EP; Marchello MJ
    J Anim Sci; 1994 Feb; 72(2):322-9. PubMed ID: 8157516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of physical characteristics of the lamb carcass using in vivo bioimpedance analysis.
    Moro AB; Pires CC; da Silva LP; Menegon AM; Venturini RS; Martins AA; Mello RO; Galvani DB
    Animal; 2019 Aug; 13(8):1744-1749. PubMed ID: 30477602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of lamb body composition using in vivo bioimpedance analysis.
    Moro AB; Pires CC; da Silva LP; Dias AMO; Simões RR; Pilecco VM; Mello RO; de Aguiar LK
    Meat Sci; 2019 Apr; 150():1-6. PubMed ID: 30562638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of electronic probes for classifying lamb carcasses.
    Kirton AH; Mercer GJ; Duganzich DM; Uljee AE
    Meat Sci; 1995; 39(2):167-76. PubMed ID: 22059823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using segmental bioimpedance analysis to estimate soft tissue and chemical composition of retail cuts and carcasses of lambs.
    Moro AB; Montanholi YR; Galvani DB; Bertemes-Filho P; Venturini RS; Menegon AM; Rosa JS; da Silva LP; Pires CC
    Meat Sci; 2022 Jan; 183():108644. PubMed ID: 34390896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of bioelectrical impedance to predict carcass composition of Holstein steers at 3, 6, 9, and 12 months of age.
    Velazco J; Morrill JL; Grunewald KK
    J Anim Sci; 1999 Jan; 77(1):131-6. PubMed ID: 10064036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composition analysis of pork carcasses by dual-energy x-ray absorptiometry.
    Mitchell AD; Scholz AM; Pursel VG; Evock-Clover CM
    J Anim Sci; 1998 Aug; 76(8):2104-14. PubMed ID: 9734860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of electronic technology to assess lamb carcass composition.
    Berg EP; Neary MK; Forrest JC; Thomas DL; Kauffman RG
    J Anim Sci; 1997 Sep; 75(9):2433-44. PubMed ID: 9303462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of saleable product in finished cattle and beef carcasses utilizing bioelectrical impedance technology.
    Marchello MJ; McLennan JE; Dhuyvetter DV; Slanger WD
    J Anim Sci; 1999 Nov; 77(11):2965-70. PubMed ID: 10568465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of carcass composition through measurements in vivo and measurements of the carcass of growing Santa Inês sheep.
    Gomes MB; Neves MLMW; Barreto LMG; Ferreira MA; Monnerat JPIDS; Carone GM; Morais JS; Véras ASC
    PLoS One; 2021; 16(3):e0247950. PubMed ID: 33667260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the Hennessy grading probe to predict yields of lamb carcasses fabricated to multiple end points.
    Garrett RP; Edwards JW; Savell JW; Tatum JD
    J Anim Sci; 1992 Apr; 70(4):1146-52. PubMed ID: 1582945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The application of bioelectrical impedance analysis in live tropical hair sheep as a predictor of body composition upon slaughter.
    Avril DH; Lallo C; Mlambo V; Bourne G
    Trop Anim Health Prod; 2013 Nov; 45(8):1803-8. PubMed ID: 23852279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and evaluation of a regression equation of prediction for fat-free soft tissue in heterogenous populations of cattle.
    Jenkins TG; Leymaster KA; MacNeil MD
    J Anim Sci; 1995 Dec; 73(12):3627-32. PubMed ID: 8655437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic, needle, and carcass measurements for predicting chemical composition of lamb carcasses.
    Ramsey CB; Kirton AH; Hogg B; Dobbie JL
    J Anim Sci; 1991 Sep; 69(9):3655-64. PubMed ID: 1938648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of lamb carcass composition from live animal measurement of bioelectrical impedance or ultrasonic tissue depths.
    Berg EP; Neary MK; Forrest JC; Thomas DL; Kauffman RG
    J Anim Sci; 1996 Nov; 74(11):2672-8. PubMed ID: 8923181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioelectrical impedance can predict skeletal muscle and fat-free skeletal muscle of beef cows and their carcasses.
    Marchello MJ; Slanger WD
    J Anim Sci; 1994 Dec; 72(12):3118-23. PubMed ID: 7759360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.