These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 953706)

  • 1. Catecholamines released from cerebral cortex in the cat; decrease during sensory stimulation.
    Reader TA; De Champlain J; Jasper H
    Brain Res; 1976 Jul; 111(1):95-108. PubMed ID: 953706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The intracortical distribution of norepinephrine, dopamine and serotonin in the cerebral cortex of the cat.
    Reader TA; Masse P; de Champlain J
    Brain Res; 1979 Nov; 177(3):499-513. PubMed ID: 497848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Release of dopamine evoked by electrical stimulation of the motor and visual areas of the cerebral cortex in both caudate nuclei and in the substantia nigra in the cat.
    Nieoullon A; Cheramy A; Glowinski J
    Brain Res; 1978 Apr; 145(1):69-83. PubMed ID: 638784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic mechanisms involved in the release of 3H-norepinephrine from the cat superior cervical ganglion.
    Adler-Graschinsky E; Filinger EJ; Martínez AE
    Life Sci; 1984 Feb; 34(9):861-71. PubMed ID: 6142396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphine decreases 3H-norepinephrine release and increases endogenous norepinephrine levels in the isolated cat superior cervical ganglion.
    Martínez AE; Adler-Graschinsky E
    Life Sci; 1985 Apr; 36(17):1679-85. PubMed ID: 3990510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of SK and BK channels in the control of catecholamine release by electrical stimulation of the cat adrenal gland.
    Montiel C; López MG; Sánchez-García P; Maroto R; Zapater P; García AG
    J Physiol; 1995 Jul; 486 ( Pt 2)(Pt 2):427-37. PubMed ID: 7473208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of adenosine on the release of acetylcholine, dopamine, and norepinephrine from the cat carotid body.
    Fitzgerald RS; Shirahata M; Wang HY; Balbir A; Chang I
    Neurosci Lett; 2004 Sep; 367(3):304-8. PubMed ID: 15337254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical deafferentation in cat focal ischemia: disturbance and recovery of sensory functions in cortical areas with different degrees of cerebral blood flow reduction.
    Graf R; Kataoka K; Rosner G; Heiss WD
    J Cereb Blood Flow Metab; 1986 Oct; 6(5):566-73. PubMed ID: 3760040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of topically applied atropine on resting and evoked cortical acetylcholine release.
    Dudar JD; Szerb JC
    J Physiol; 1969 Aug; 203(3):741-62. PubMed ID: 5387031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulus-specific mobilization of dopamine and norepinephrine stores in cat carotid body.
    Chen J; Gomez-Nino A; Gonzalez C; Dinger B; Fidone S
    J Auton Nerv Syst; 1997 Dec; 67(1-2):109-13. PubMed ID: 9470151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of prefrontal cortex abolishes cortical acetylcholine release evoked by sensory or sensory pathway stimulation in the rat.
    Rasmusson DD; Smith SA; Semba K
    Neuroscience; 2007 Oct; 149(1):232-41. PubMed ID: 17850979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A functional role of cholinergic innervation to neurons in the cat visual cortex.
    Sato H; Hata Y; Masui H; Tsumoto T
    J Neurophysiol; 1987 Oct; 58(4):765-80. PubMed ID: 3681394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release of cortical catecholamines by visual stimulation requires activity in thalamocortical afferents of monkey and cat.
    Marrocco RT; Lane RF; McClurkin JW; Blaha CD; Alkire MF
    J Neurosci; 1987 Sep; 7(9):2756-67. PubMed ID: 3625272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological studies of acetylcholine and the role of the basal forebrain in the somatosensory cortex of the cat. II. Cortical neurons excited by somatic stimuli.
    Tremblay N; Warren RA; Dykes RW
    J Neurophysiol; 1990 Oct; 64(4):1212-22. PubMed ID: 2258742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of catechol O-methyltransferase to the removal of accumulated interstitial catecholamines evoked by myocardial ischemia.
    Kuroko Y; Fujii T; Yamazaki T; Akiyama T; Ishino K; Sano S; Mori H
    Neurosci Lett; 2005 Nov; 388(2):61-4. PubMed ID: 16026927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The release of gamma-aminobutyric acid during inhibition in the cat visual cortex.
    Iversen LL; Mitchell JF; Srinivasan V
    J Physiol; 1971 Jan; 212(2):519-34. PubMed ID: 4323309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Input-selective potentiation and rebalancing of primary sensory cortex afferents by endogenous acetylcholine.
    Kuo MC; Rasmusson DD; Dringenberg HC
    Neuroscience; 2009 Sep; 163(1):430-41. PubMed ID: 19531370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cholinergic depletion on neuron activities in the cat visual cortex.
    Sato H; Hata Y; Hagihara K; Tsumoto T
    J Neurophysiol; 1987 Oct; 58(4):781-94. PubMed ID: 3681395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lesions of nonvisual inputs affect plasticity, norepinephrine content, and acetylcholine content of visual cortex.
    Gordon B; Mitchell B; Mohtadi K; Roth E; Tseng Y; Turk F
    J Neurophysiol; 1990 Dec; 64(6):1851-60. PubMed ID: 2074468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional changes in [3H]-noradrenaline uptake, catecholamines and catecholamine synthetic and catabolic enzymes in rat brain following neonatal 6-hydroxydopamine treatment.
    Jonsson G; Sachs C
    Med Biol; 1976 Aug; 54(4):286-97. PubMed ID: 8670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.