BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 9537395)

  • 21. Metabolism of tryptophan by Pseudomonas aureofaciens and its relationship to pyrrolnitrin biosynthesis.
    Salcher O; Lingens F
    J Gen Microbiol; 1980 Dec; 121(2):465-71. PubMed ID: 7264603
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reciprocal enhancement of gene expression between the phz and prn operon in Pseudomonas chlororaphis G05.
    Zhang B; Wang Y; Miao J; Lu Y; Lu R; Sun X; Luo W; Chi X; Feng Z; Ge Y
    J Basic Microbiol; 2018 Sep; 58(9):793-805. PubMed ID: 29995319
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Zhang J; Mavrodi DV; Yang M; Thomashow LS; Mavrodi OV; Kelton J; Weller DM
    Phytopathology; 2020 May; 110(5):1010-1017. PubMed ID: 32065038
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The biosynthesis of brominated pyrrolnitrin derivatives by Pseudomonas aureofaciens.
    van Pée KH; Salcher O; Fischer P; Bokel M; Lingens F
    J Antibiot (Tokyo); 1983 Dec; 36(12):1735-42. PubMed ID: 6662814
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification and characterization of the flavin:NADH reductase (PrnF) involved in a novel two-component arylamine oxygenase.
    Lee JK; Zhao H
    J Bacteriol; 2007 Dec; 189(23):8556-63. PubMed ID: 17921302
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of plant-modulated alterations in antifungal gene expression in Pseudomonas fluorescens CHA0 on roots by flow cytometry.
    de Werra P; Baehler E; Huser A; Keel C; Maurhofer M
    Appl Environ Microbiol; 2008 Mar; 74(5):1339-49. PubMed ID: 18165366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing the substrate specificity of aminopyrrolnitrin oxygenase (PrnD) by mutational analysis.
    Lee JK; Ang EL; Zhao H
    J Bacteriol; 2006 Sep; 188(17):6179-83. PubMed ID: 16923884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The sigma factor sigma s affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5.
    Sarniguet A; Kraus J; Henkels MD; Muehlchen AM; Loper JE
    Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12255-9. PubMed ID: 8618880
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Halogenation of aromatic compounds: thermodynamic, mechanistic and ecological aspects.
    Dolfing J
    FEMS Microbiol Lett; 1998 Oct; 167(2):271-4. PubMed ID: 9867470
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Global regulation of expression of antifungal factors by a Pseudomonas fluorescens biological control strain.
    Gaffney TD; Lam ST; Ligon J; Gates K; Frazelle A; Di Maio J; Hill S; Goodwin S; Torkewitz N; Allshouse AM
    Mol Plant Microbe Interact; 1994; 7(4):455-63. PubMed ID: 8075420
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of the antifungal compound pyrrolnitrin is quorum sensing-regulated in members of the Burkholderia cepacia complex.
    Schmidt S; Blom JF; Pernthaler J; Berg G; Baldwin A; Mahenthiralingam E; Eberl L
    Environ Microbiol; 2009 Jun; 11(6):1422-37. PubMed ID: 19220396
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolism of tryptophan by Pseudomonas aureofaciens. 3. Production of substituted pyrrolnitrins from tryptophan analogues.
    Hamill RL; Elander RP; Mabe JA; Gorman M
    Appl Microbiol; 1970 May; 19(5):721-5. PubMed ID: 4316270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduced expression of a distal gene of the prn gene cluster in deletion mutants of Aspergillus nidulans: genetic evidence for a dicistronic messenger in an eukaryote.
    Arst HN; MacDonald DW
    Mol Gen Genet; 1978 Jul; 163(1):17-22. PubMed ID: 355839
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5.
    Corbell N; Loper JE
    J Bacteriol; 1995 Nov; 177(21):6230-6. PubMed ID: 7592389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation and characterization of a mutant of Pseudomonas aureofaciens ATCC 15926 with an increased capacity for synthesis of pyrrolnitrin.
    Salcher O; Lingens F
    J Gen Microbiol; 1980 Jun; 118(2):509-13. PubMed ID: 7441201
    [TBL] [Abstract][Full Text] [Related]  

  • 36.
    Wu X; Chi X; Wang Y; Zhang K; Kai L; He Q; Tang J; Wang K; Sun L; Hao X; Xie W; Ge Y
    Plant Pathol J; 2019 Aug; 35(4):351-361. PubMed ID: 31481858
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of retS gene on antibiotics production in Pseudomonas fluorescens FD6.
    Zhang Q; Xiao Q; Xu J; Tong Y; Wen J; Chen X; Wei L
    Microbiol Res; 2015 Nov; 180():23-9. PubMed ID: 26505308
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of an entire bacterial operon in plants.
    Mozes-Koch R; Gover O; Tanne E; Peretz Y; Maori E; Chernin L; Sela I
    Plant Physiol; 2012 Apr; 158(4):1883-92. PubMed ID: 22353575
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of Vfr in the regulation of antifungal compound production by Pseudomonas fluorescens FD6.
    Zhang Q; Ji Y; Xiao Q; Chng S; Tong Y; Chen X; Liu F
    Microbiol Res; 2016; 188-189():106-112. PubMed ID: 27296968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cloning of Genes Involved in the Synthesis of Pyrrolnitrin from Pseudomonas fluorescens and Role of Pyrrolnitrin Synthesis in Biological Control of Plant Disease.
    Hill DS; Stein JI; Torkewitz NR; Morse AM; Howell CR; Pachlatko JP; Becker JO; Ligon JM
    Appl Environ Microbiol; 1994 Jan; 60(1):78-85. PubMed ID: 16349167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.