BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 9537395)

  • 41. Metabolism of tryptophans by Pseudomonas aureofaciens. VI. Production of pyrrolnitrin by selected Pseudomonas species.
    Elander RP; Mabe JA; Hamill RH; Gorman M
    Appl Microbiol; 1968 May; 16(5):753-8. PubMed ID: 4968963
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp.
    Souza JT; Raaijmakers JM
    FEMS Microbiol Ecol; 2003 Feb; 43(1):21-34. PubMed ID: 19719693
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum.
    Huang R; Feng Z; Chi X; Sun X; Lu Y; Zhang B; Lu R; Luo W; Wang Y; Miao J; Ge Y
    Microbiol Res; 2018 Oct; 215():55-64. PubMed ID: 30172309
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87.
    Bangera MG; Thomashow LS
    J Bacteriol; 1999 May; 181(10):3155-63. PubMed ID: 10322017
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pyrrolnitrin and Hydrogen Cyanide Production by Pseudomonas chlororaphis Strain PA23 Exhibits Nematicidal and Repellent Activity against Caenorhabditis elegans.
    Nandi M; Selin C; Brassinga AK; Belmonte MF; Fernando WG; Loewen PC; de Kievit TR
    PLoS One; 2015; 10(4):e0123184. PubMed ID: 25901993
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gene roles in the prn cluster of Aspergillus nidulans.
    Jones SA; Arst HN; Macdonald DW
    Curr Genet; 1981 Apr; 3(1):49-56. PubMed ID: 24189952
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25.
    Moon CD; Zhang XX; Matthijs S; Schäfer M; Budzikiewicz H; Rainey PB
    BMC Microbiol; 2008 Jan; 8():7. PubMed ID: 18194565
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Structure-functional organization of Pseudomonas fluorescens genes, coding for biosynthetic enzymes of phenazine-1-carbonic acid].
    Mavrodi DV; Ksenzenko VN; Chatuev BM; Tomashov LS; Boronin AM
    Mol Biol (Mosk); 1997; 31(1):74-80. PubMed ID: 9173250
    [No Abstract]   [Full Text] [Related]  

  • 49. The trehalose operon of Pseudomonas fluorescens ATCC 17400.
    Matthijs S; Koedam N; Cornelis P; De Greve H
    Res Microbiol; 2000 Dec; 151(10):845-51. PubMed ID: 11191810
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Secondary metabolites of the fluorescent pseudomonads.
    Leisinger T; Margraff R
    Microbiol Rev; 1979 Sep; 43(3):422-42. PubMed ID: 120492
    [No Abstract]   [Full Text] [Related]  

  • 51. Recent developments in enzymatic chlorination.
    Murphy CD
    Nat Prod Rep; 2006 Apr; 23(2):147-52. PubMed ID: 16572225
    [TBL] [Abstract][Full Text] [Related]  

  • 52. RpoN (sigma54) controls production of antifungal compounds and biocontrol activity in Pseudomonas fluorescens CHA0.
    Péchy-Tarr M; Bottiglieri M; Mathys S; Lejbølle KB; Schnider-Keel U; Maurhofer M; Keel C
    Mol Plant Microbe Interact; 2005 Mar; 18(3):260-72. PubMed ID: 15782640
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of multiple plant growth promoting traits of an isolate of Pseudomonas fluorescens strain Psd.
    Upadhyay A; Srivastava S
    Indian J Exp Biol; 2010 Jun; 48(6):601-9. PubMed ID: 20882763
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional analysis of a chromosomal arsenic resistance operon in Pseudomonas fluorescens strain MSP3.
    Prithivirajsingh S; Mishra SK; Mahadevan A
    Mol Biol Rep; 2001; 28(2):63-72. PubMed ID: 11931390
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of genes affecting alginate biosynthesis in Pseudomonas fluorescens by screening a transposon insertion library.
    Ertesvåg H; Sletta H; Senneset M; Sun YQ; Klinkenberg G; Konradsen TA; Ellingsen TE; Valla S
    BMC Genomics; 2017 Jan; 18(1):11. PubMed ID: 28049432
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Initial characterization of a bolA homologue from Pseudomonas fluorescens indicates different roles for BolA-like proteins in P. fluorescens and Escherichia coli.
    Koch B; Nybroe O
    FEMS Microbiol Lett; 2006 Sep; 262(1):48-56. PubMed ID: 16907738
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure and function of the phenazine biosynthesis protein PhzF from Pseudomonas fluorescens 2-79.
    Parsons JF; Song F; Parsons L; Calabrese K; Eisenstein E; Ladner JE
    Biochemistry; 2004 Oct; 43(39):12427-35. PubMed ID: 15449932
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The D-galactose dehydrogenase gene from Pseudomonas fluorescens: characterization of mutations leading to increased expression in Escherichia coli.
    Fiedler S; Buckel P
    Appl Microbiol Biotechnol; 1990 Jul; 33(4):418-23. PubMed ID: 1367469
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of a New Phosphatase Enzyme Potentially Involved in the Sugar Phosphate Stress Response in Pseudomonas fluorescens.
    Maleki S; Hrudikova R; Zotchev SB; Ertesvåg H
    Appl Environ Microbiol; 2017 Jan; 83(2):. PubMed ID: 27836849
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular characterization of a plasmid from Pseudomonas fluorescens involved in styrene degradation.
    Bestetti G; Galli E; Ruzzi M; Baldacci G; Zennaro E; Frontali L
    Plasmid; 1984 Nov; 12(3):181-8. PubMed ID: 6441942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.