These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 9537811)
1. Glucose deprivation increases basal and electrically evoked transmitter release from rat striatal slices. Role of NMDA and adenosine A1 receptors. Jin S; Fredholm BB Eur J Pharmacol; 1997 Dec; 340(2-3):169-75. PubMed ID: 9537811 [TBL] [Abstract][Full Text] [Related]
2. Adenosine A1 receptors mediate hypoxia-induced inhibition of electrically evoked transmitter release from rat striatal slices. Jin S; Fredholm BB Eur J Pharmacol; 1997 Jun; 329(2-3):107-13. PubMed ID: 9226401 [TBL] [Abstract][Full Text] [Related]
3. Electrically-evoked dopamine and acetylcholine release from rat striatal slices perfused without magnesium: regulation by glutamate acting on NMDA receptors. Jin S; Fredholm BB Br J Pharmacol; 1997 Aug; 121(7):1269-76. PubMed ID: 9257903 [TBL] [Abstract][Full Text] [Related]
4. Effects of adenosine A1 and A2 receptor activation on electrically evoked dopamine and acetylcholine release from rat striatal slices. Jin S; Johansson B; Fredholm BB J Pharmacol Exp Ther; 1993 Nov; 267(2):801-8. PubMed ID: 7902434 [TBL] [Abstract][Full Text] [Related]
5. Adenosine A2A receptor stimulation increases release of acetylcholine from rat hippocampus but not striatum, and does not affect catecholamine release. Jin S; Fredholm BB Naunyn Schmiedebergs Arch Pharmacol; 1997 Jan; 355(1):48-56. PubMed ID: 9007842 [TBL] [Abstract][Full Text] [Related]
6. Role of NMDA, AMPA and kainate receptors in mediating glutamate- and 4-AP-induced dopamine and acetylcholine release from rat striatal slices. Jin S; Fredholm BB Neuropharmacology; 1994 Sep; 33(9):1039-48. PubMed ID: 7838316 [TBL] [Abstract][Full Text] [Related]
7. Electrically evoked release of glutamate in rat hippocampal slices: effects of various drugs and fimbria-fornix lesions. Sehmisch S; Blauth E; Thorn D; Cassel JC; Kelche C; Feuerstein TJ; Jackisch R Naunyn Schmiedebergs Arch Pharmacol; 2001 May; 363(5):481-90. PubMed ID: 11383708 [TBL] [Abstract][Full Text] [Related]
8. Kappa1- and kappa2-opioid receptors mediating presynaptic inhibition of dopamine and acetylcholine release in rat neostriatum. Schoffelmeer AN; Hogenboom F; Mulder AH Br J Pharmacol; 1997 Oct; 122(3):520-4. PubMed ID: 9351509 [TBL] [Abstract][Full Text] [Related]
9. Ionotropic glutamate receptor types leading to adenosine-mediated inhibition of electrically evoked [3H]-noradrenaline release in rabbit brain cortex slices. von Kügelgen I; Späth L; Starke K Br J Pharmacol; 1993 Dec; 110(4):1544-50. PubMed ID: 7508327 [TBL] [Abstract][Full Text] [Related]
10. Adenosine receptor-mediated modulation of dopamine release in the nucleus accumbens depends on glutamate neurotransmission and N-methyl-D-aspartate receptor stimulation. Quarta D; Borycz J; Solinas M; Patkar K; Hockemeyer J; Ciruela F; Lluis C; Franco R; Woods AS; Goldberg SR; Ferré S J Neurochem; 2004 Nov; 91(4):873-80. PubMed ID: 15525341 [TBL] [Abstract][Full Text] [Related]
11. Distinct modifications by neurokinin1 (SR140333) and neurokinin2 (SR48968) tachykinin receptor antagonists of the N-methyl-D-aspartate-evoked release of acetylcholine in striosomes and matrix of the rat striatum. Blanchet F; Gauchy C; Perez S; Soubrié P; Glowinski J; Kemel ML Neuroscience; 1998 Aug; 85(4):1025-36. PubMed ID: 9681943 [TBL] [Abstract][Full Text] [Related]
12. Effects of lobeline and dimethylphenylpiperazinium iodide (DMPP) on N-methyl-D-aspartate (NMDA)-evoked acetylcholine release in vitro: evidence for a lack of involvement of classical neuronal nicotinic acetylcholine receptors. Rao TS; Correa LD; Lloyd GK Neuropharmacology; 1997 Jan; 36(1):39-50. PubMed ID: 9144640 [TBL] [Abstract][Full Text] [Related]
13. Interaction between A1 adenosine and class II metabotropic glutamate receptors in the regulation of purine and glutamate release from rat hippocampal slices. Di Iorio P; Battaglia G; Ciccarelli R; Ballerini P; Giuliani P; Poli A; Nicoletti F; Caciagli F J Neurochem; 1996 Jul; 67(1):302-9. PubMed ID: 8667006 [TBL] [Abstract][Full Text] [Related]
14. Inhibition by dizocilpine (MK-801) of striatal dopamine release induced by MPTP and MPP+: possible action at the dopamine transporter. Clarke PB; Reuben M Br J Pharmacol; 1995 Jan; 114(2):315-22. PubMed ID: 7881731 [TBL] [Abstract][Full Text] [Related]
15. Characteristics of the NMDA receptor modulating hypoxia/hypoglycaemia-induced rat striatal dopamine release in vitro. Toner CC; Stamford JA Eur J Pharmacol; 1997 Dec; 340(2-3):133-43. PubMed ID: 9537807 [TBL] [Abstract][Full Text] [Related]
16. Excessive release of [3H]noradrenaline and glutamate in response to simulation of ischemic conditions in rat spinal cord slice preparation: effect of NMDA and AMPA receptor antagonists. Nakai T; Milusheva E; Baranyi M; Uchihashi Y; Satoh T; Vizi ES Eur J Pharmacol; 1999 Feb; 366(2-3):143-50. PubMed ID: 10082194 [TBL] [Abstract][Full Text] [Related]
17. Characterization of electrically evoked [3H]-D-aspartate release from hippocampal slices. Savage DD; Galindo R; Queen SA; Paxton LL; Allan AM Neurochem Int; 2001 Mar; 38(3):255-67. PubMed ID: 11099785 [TBL] [Abstract][Full Text] [Related]
18. Adenosine but not an adenine nucleotide mediates tonic purinergic inhibition, as well as inhibition by glutamate, of noradrenaline release in rabbit brain cortex slices. von Kügelgen I; Späth L; Starke K Naunyn Schmiedebergs Arch Pharmacol; 1992 Dec; 346(6):677-84. PubMed ID: 1362455 [TBL] [Abstract][Full Text] [Related]