These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 9537986)

  • 1. The solution structure of type II antifreeze protein reveals a new member of the lectin family.
    Gronwald W; Loewen MC; Lix B; Daugulis AJ; Sönnichsen FD; Davies PL; Sykes BD
    Biochemistry; 1998 Apr; 37(14):4712-21. PubMed ID: 9537986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative modeling of the three-dimensional structure of type II antifreeze protein.
    Sönnichsen FD; Sykes BD; Davies PL
    Protein Sci; 1995 Mar; 4(3):460-71. PubMed ID: 7540906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ice-binding site of sea raven antifreeze protein is distinct from the carbohydrate-binding site of the homologous C-type lectin.
    Loewen MC; Gronwald W; Sönnichsen FD; Sykes BD; Davies PL
    Biochemistry; 1998 Dec; 37(51):17745-53. PubMed ID: 9922140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cystine-rich fish antifreeze is produced as an active proprotein precursor in fall armyworm cells.
    Duncker BP; Gauthier SY; Davies PL
    Biochem Biophys Res Commun; 1994 Sep; 203(3):1851-7. PubMed ID: 7945337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and purification of sea raven type II antifreeze protein from Drosophila melanogaster S2 cells.
    Scotter AJ; Kuntz DA; Saul M; Graham LA; Davies PL; Rose DR
    Protein Expr Purif; 2006 Jun; 47(2):374-83. PubMed ID: 16330225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ice-binding site of Atlantic herring antifreeze protein corresponds to the carbohydrate-binding site of C-type lectins.
    Ewart KV; Li Z; Yang DS; Fletcher GL; Hew CL
    Biochemistry; 1998 Mar; 37(12):4080-5. PubMed ID: 9521729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of proline mutants to help solve the NMR solution structure of type III antifreeze protein.
    Chao H; Davies PL; Sykes BD; Sönnichsen FD
    Protein Sci; 1993 Sep; 2(9):1411-28. PubMed ID: 8401227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear magnetic resonance solution structure of the plasminogen-activator protein staphylokinase.
    Ohlenschläger O; Ramachandran R; Gührs KH; Schlott B; Brown LR
    Biochemistry; 1998 Jul; 37(30):10635-42. PubMed ID: 9692953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Herring antifreeze protein: primary structure and evidence for a C-type lectin evolutionary origin.
    Ewart KV; Fletcher GL
    Mol Mar Biol Biotechnol; 1993 Feb; 2(1):20-7. PubMed ID: 8364686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution structure, backbone dynamics and chitin binding of the anti-fungal protein from Streptomyces tendae TU901.
    Campos-Olivas R; Hörr I; Bormann C; Jung G; Gronenborn AM
    J Mol Biol; 2001 May; 308(4):765-82. PubMed ID: 11350173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structure of the DNA-binding domain of NtrC with three alanine substitutions.
    Pelton JG; Kustu S; Wemmer DE
    J Mol Biol; 1999 Oct; 292(5):1095-110. PubMed ID: 10512705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure and mutational analysis of Ca2+-independent type II antifreeze protein from longsnout poacher, Brachyopsis rostratus.
    Nishimiya Y; Kondo H; Takamichi M; Sugimoto H; Suzuki M; Miura A; Tsuda S
    J Mol Biol; 2008 Oct; 382(3):734-46. PubMed ID: 18674542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folding and structural characterization of highly disulfide-bonded beetle antifreeze protein produced in bacteria.
    Liou YC; Daley ME; Graham LA; Kay CM; Walker VK; Sykes BD; Davies PL
    Protein Expr Purif; 2000 Jun; 19(1):148-57. PubMed ID: 10833402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution structure of a tobacco lipid transfer protein exhibiting new biophysical and biological features.
    Da Silva P; Landon C; Industri B; Marais A; Marion D; Ponchet M; Vovelle F
    Proteins; 2005 May; 59(2):356-67. PubMed ID: 15726627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fibronectin type III domain as a scaffold for novel binding proteins.
    Koide A; Bailey CW; Huang X; Koide S
    J Mol Biol; 1998 Dec; 284(4):1141-51. PubMed ID: 9837732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the secondary structural elements of chicken liver fatty acid binding protein by two-dimensional homonuclear NMR.
    Schievano E; Mammi S; Peggion E
    Biopolymers; 1999 Jul; 50(1):1-11. PubMed ID: 10341664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collectins and collectin receptors in innate immunity.
    Holmskov UL
    APMIS Suppl; 2000; 100():1-59. PubMed ID: 11021254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthetic production of type II fish antifreeze protein: fermentation by Pichia pastoris.
    Loewen MC; Liu X; Davies PL; Daugulis AJ
    Appl Microbiol Biotechnol; 1997 Oct; 48(4):480-6. PubMed ID: 9390456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global folds of proteins with low densities of NOEs using residual dipolar couplings: application to the 370-residue maltodextrin-binding protein.
    Mueller GA; Choy WY; Yang D; Forman-Kay JD; Venters RA; Kay LE
    J Mol Biol; 2000 Jun; 300(1):197-212. PubMed ID: 10864509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and intramodular dynamics of the amino-terminal LIM domain from quail cysteine- and glycine-rich protein CRP2.
    Kontaxis G; Konrat R; Kräutler B; Weiskirchen R; Bister K
    Biochemistry; 1998 May; 37(20):7127-34. PubMed ID: 9585524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.