These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 9538170)

  • 1. Rapid DNA quantification method in microplates using daunorubicine fluorescence quenching.
    Gagne M; Page M
    Oncol Rep; 1998; 5(3):653-5. PubMed ID: 9538170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence quenching and spectrophotometric methods for the determination of daunorubicin with meso-tera (4-sulphophenyl) porphyrin as probe.
    Tian J; Liu S; Liu Z; Yang J; Zhu J; Qiao M; Hu X
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():7-13. PubMed ID: 24177862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Determination of nucleic acids using toluidine blue as a fluorescence probe].
    Guo LQ; Ye FG; Lin XC; Xie ZH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Jan; 26(1):121-4. PubMed ID: 16827359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mechanism of daunorubicin interaction with DNA].
    Brikenshteĭn VKh; Baranov EP
    Antibiot Med Biotekhnol; 1985 Feb; 30(2):90-6. PubMed ID: 4004187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of magdala red as a fluorescence probe in the determination of nucleic acids.
    Yang HH; Zhu QZ; Chen QY; Li DH; Xu JG
    Fresenius J Anal Chem; 2000 Feb; 366(3):303-6. PubMed ID: 11225676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of colorectal cancer by a quantitative fluorescence determination of DNA amplification in stool.
    Calistri D; Rengucci C; Lattuneddu A; Francioni G; Polifemo AM; Nanni O; Saragoni L; Monti F; Ravaioli A; Zoli W; Amadori D
    Neoplasia; 2004; 6(5):536-40. PubMed ID: 15548362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assay for determination of daunorubicin in cancer cells with multidrug resistance phenotype.
    Krumpochova P; Kocurova A; Dolezel P; Mlejnek P
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Jul; 879(21):1875-80. PubMed ID: 21641880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of interactions of anthraquinones with DNA using ethidium bromide as a fluorescence probe.
    Qiao C; Bi S; Sun Y; Song D; Zhang H; Zhou W
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jun; 70(1):136-43. PubMed ID: 17825605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FIT probes: peptide nucleic acid probes with a fluorescent base surrogate enable real-time DNA quantification and single nucleotide polymorphism discovery.
    Socher E; Jarikote DV; Knoll A; Röglin L; Burmeister J; Seitz O
    Anal Biochem; 2008 Apr; 375(2):318-30. PubMed ID: 18249184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitation of DNA and RNA in crude tissue extracts by flow injection analysis.
    Caldarone EM; Buckley LJ
    Anal Biochem; 1991 Nov; 199(1):137-41. PubMed ID: 1725474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid and accurate detection of monoclonal immunoglobulin heavy chain gene rearrangement by DNA melting curve analysis in the LightCycler System.
    Xu D; Du J; Schultz C; Ali A; Ratech H
    J Mol Diagn; 2002 Nov; 4(4):216-22. PubMed ID: 12411589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of real-time PCR and fluorogenic probes for rapid and accurate genotyping of newborn mice.
    Hnatyszyn HJ; Podack ER; Young AK; Seivright R; Spruill G; Kraus G
    Mol Cell Probes; 2001 Jun; 15(3):169-75. PubMed ID: 11352598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA influence on norfloxacin fluorescence.
    Perianu E; Rau I; Vijan LE
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():8-15. PubMed ID: 30081272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An effective method based on real time fluorescence quenching for single nucleotide polymorphism detection.
    Xu Y; Han S; Huang X; Zhuo S; Dai H; Wang K; Li Z; Liu J
    J Biotechnol; 2014 Sep; 186():156-61. PubMed ID: 24998766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Fluorescence cross-correlation spectroscopy for molecular fluorescence cross-correlation spectroscopy for molecular dynamics in the living cell].
    Sasaki A; Kinjo M
    Seikagaku; 2012 Dec; 84(12):1024-7. PubMed ID: 23350515
    [No Abstract]   [Full Text] [Related]  

  • 16. Comparative evaluation of the intracellular accumulation and DNA binding of idarubicin and daunorubicin in sensitive and multidrug-resistant human leukaemia K562 cells.
    Bogush T; Robert J
    Anticancer Res; 1996; 16(1):365-8. PubMed ID: 8615637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous fluorescence monitoring of rapid cycle DNA amplification. 1997.
    Wittwer CT; Herrmann MG; Moss AA; Rasmussen RP
    Biotechniques; 2013 Jun; 54(6):314-20. PubMed ID: 23905170
    [No Abstract]   [Full Text] [Related]  

  • 18. Sensitive determination of DNA based on the interaction between norfloxacin-Tb3+ complex and DNA.
    Tong C; Hu Z; Liu W
    J Agric Food Chem; 2005 Aug; 53(16):6207-12. PubMed ID: 16076095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct determination of intracellular daunorubicin in intact confluent monolayers of AT1 prostate carcinoma cells using a multiwell-multilabel counter.
    Sauvant C; Thews O; Wirth C; Gekle M
    Anal Biochem; 2008 Oct; 381(1):81-5. PubMed ID: 18634747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitation of DNA and RNA with absorption and fluorescence spectroscopy.
    Gallagher SR
    Curr Protoc Neurosci; 2001 May; Appendix 1():Appendix 1K. PubMed ID: 18428442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.