BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 9538274)

  • 21. NaCl transport in mouse medullary thick ascending limbs. I. Functional nephron heterogeneity and ADH-stimulated NaCl cotransport.
    Hebert SC; Culpepper RM; Andreoli TE
    Am J Physiol; 1981 Oct; 241(4):F412-31. PubMed ID: 7315965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of altered Na+ entry on expression of apical and basolateral transport proteins in A6 epithelia.
    Lebowitz J; An B; Edinger RS; Zeidel ML; Johnson JP
    Am J Physiol Renal Physiol; 2003 Sep; 285(3):F524-31. PubMed ID: 12746257
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of NaCl transport in the thick ascending limb.
    Hebert SC; Andreoli TE
    Am J Physiol; 1984 Jun; 246(6 Pt 2):F745-56. PubMed ID: 6377912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Renal magnesium handling: new insights in understanding old problems.
    Quamme GA
    Kidney Int; 1997 Nov; 52(5):1180-95. PubMed ID: 9350641
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nephron structure and immunohistochemical localization of ion pumps and aquaporins in the kidney of frogs inhabiting different environments.
    Uchiyama M; Yoshizawa H
    Symp Soc Exp Biol; 2002; (54):109-28. PubMed ID: 14992148
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of nitric oxide in the regulation of nephron transport.
    Ortiz PA; Garvin JL
    Am J Physiol Renal Physiol; 2002 May; 282(5):F777-84. PubMed ID: 11934686
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of amiloride and a novel diuretic, 7-chloro-2,3-dihydro-1-(2-methylbenzoyl)-4(1H)-quinolinone-4-oxime-o-su lfonic acid, potassium salt (M17055), on calcium transport in the rabbit connecting tubule.
    Yamasaki F; Yoshitomi K; Shinkawa T; Imai M
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1589-93. PubMed ID: 8396639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NaCl transport in mouse medullary thick ascending limbs. II. ADH enhancement of transcellular NaCl cotransport; origin of transepithelial voltage.
    Hebert SC; Culpepper RM; Andreoli TE
    Am J Physiol; 1981 Oct; 241(4):F432-42. PubMed ID: 7315966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell-specific expression of amiloride-sensitive, Na(+)-conducting ion channels in the kidney.
    Ciampolillo F; McCoy DE; Green RB; Karlson KH; Dagenais A; Molday RS; Stanton BA
    Am J Physiol; 1996 Oct; 271(4 Pt 1):C1303-15. PubMed ID: 8897838
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solute transport and oxygen consumption along the nephrons: effects of Na+ transport inhibitors.
    Layton AT; Laghmani K; Vallon V; Edwards A
    Am J Physiol Renal Physiol; 2016 Dec; 311(6):F1217-F1229. PubMed ID: 27707706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression and function of calcineurin in the mammalian nephron: physiological roles, receptor signaling, and ion transport.
    Tumlin JA
    Am J Kidney Dis; 1997 Dec; 30(6):884-95. PubMed ID: 9398138
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of Ca(2+) channel blockers on amiloride-sensitive Na(+) permeable channels and Na(+) transport in fetal rat alveolar type II epithelium.
    Marunaka Y; Niisato N
    Biochem Pharmacol; 2002 Apr; 63(8):1547-52. PubMed ID: 11996897
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A MicroRNA Cluster miR-23-24-27 Is Upregulated by Aldosterone in the Distal Kidney Nephron Where it Alters Sodium Transport.
    Liu X; Edinger RS; Klemens CA; Phua YL; Bodnar AJ; LaFramboise WA; Ho J; Butterworth MB
    J Cell Physiol; 2017 Jun; 232(6):1306-1317. PubMed ID: 27636893
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Renal potassium transport: contributions of individual nephron segments and populations.
    Wright FS; Giebisch G
    Am J Physiol; 1978 Dec; 235(6):F515-27. PubMed ID: 367178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. K+ secretion in the rat kidney: Na+ channel-dependent and -independent mechanisms.
    Frindt G; Palmer LG
    Am J Physiol Renal Physiol; 2009 Aug; 297(2):F389-96. PubMed ID: 19474187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sodium reabsorption in aldosterone-sensitive distal nephron: news and contributions from genetically engineered animals.
    Verrey F
    Curr Opin Nephrol Hypertens; 2001 Jan; 10(1):39-47. PubMed ID: 11195050
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of active ion transport across primary rabbit corneal epithelial cell layers (RCrECL) cultured at an air-interface.
    Chang-Lin JE; Kim KJ; Lee VH
    Exp Eye Res; 2005 Jun; 80(6):827-36. PubMed ID: 15939039
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A rapid nongenomic effect of aldosterone on intracellular sodium concentration in the distal nephron segment of the rat.
    Logvinenko NS; Solenov EI; Ivanova LN
    Dokl Biochem Biophys; 2006; 406():7-10. PubMed ID: 16583997
    [No Abstract]   [Full Text] [Related]  

  • 39. Loop diuretics affect transcellular electrolyte transport in cells of the distal convoluted tubule.
    Beck FX; Ohno A; Dörge A; Thurau K
    J Pharmacol Exp Ther; 1994 Oct; 271(1):403-7. PubMed ID: 7965741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ion exchangers mediating NaCl transport in the proximal tubule.
    Aronson PS
    Wien Klin Wochenschr; 1997 Jun; 109(12-13):435-40. PubMed ID: 9261983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.