These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 953849)

  • 1. Covalent assembly of mouse immunoglobulin G subclasses in vitro: application of a theoretical model for interchain disulfide bond formation.
    Percy ME; Baumal R; Dorrington KJ; Percy JR
    Can J Biochem; 1976 Aug; 54(8):675-87. PubMed ID: 953849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assembly of three major subclasses of mouse immunoglobulin G: a theoretical model for covalent assembly in vivo.
    Percy JR; Percy ME; Baumal R
    Can J Biochem; 1976 Aug; 54(8):688-98. PubMed ID: 953850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A theoretical model for the covalent assembly of immunoglobulins. Application to the assembly of human immunoglobulin G in vitro.
    Percy JR; Percy ME; Dorrington KJ
    J Biol Chem; 1975 Mar; 250(6):2398-400. PubMed ID: 1117010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A kinetic study in vitro of the reoxidation of interchain disulfide bonds in a human immunoglobulin IgGLk. Correlation between sulfhydryl disappearance and intermediates in covalent assembly of H2L2.
    Sears DW; Mohrer J; Beychok S
    Proc Natl Acad Sci U S A; 1975 Jan; 72(1):353-7. PubMed ID: 235127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acquisition of the covalent quaternary structure of an immunoglobulin G molecule. Theoretical reoxidation models.
    Sears DW; Beychok S
    Biochemistry; 1977 May; 16(9):2026-31. PubMed ID: 403937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acquisition of the covalent quaternary structure of an immunoglobulin G molecule. Reoxidative assembly in vitro.
    Sears DW; Kazin AR; Mohrer J; Friedman F; Beychok S
    Biochemistry; 1977 May; 16(9):2016-25. PubMed ID: 403936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human IgG is substrate for the thioredoxin system: differential cleavage pattern of interchain disulfide bridges in IgG subclasses.
    Magnusson CG; Björnstedt M; Holmgren A
    Mol Immunol; 1997 Jul; 34(10):709-17. PubMed ID: 9430198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative susceptibilities of the interchain disulfides of an immunoglobulin G molecule to reduction by dithiothreitol.
    Sears DW; Mohrer J; Beychok S
    Biochemistry; 1977 May; 16(9):2031-5. PubMed ID: 403938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of secretory component to dimers of immunoglobulin A in vitro. Mechanism of the covalent bond formation.
    Lindh E; Björk I
    Eur J Biochem; 1976 Feb; 62(2):263-70. PubMed ID: 1253791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural requirements of immunoglobulin G for binding to the Fc gamma receptors of the human tumor cell lines U937, HL-60, ML-1, and K562.
    McCool D; Birshtein BK; Painter RH
    J Immunol; 1985 Sep; 135(3):1975-80. PubMed ID: 3860563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of intermolecular disulfide bonds on nascent immunoglobulin polypeptides.
    Bergman LW; Kuehl WM
    J Biol Chem; 1979 Jul; 254(13):5690-4. PubMed ID: 109440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of interchain disulfide bonds in Bence Jones proteins and Fab(t) fragments of immunoglobulin G through thiol-disulfide interchange.
    Kato M; Azuma T; Isobe T; Hamaguchi K
    J Biochem; 1978 Dec; 84(6):1475-83. PubMed ID: 738998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folding pathways of immunoglobulin domains. The folding kinetics of the Cgamma3 domain of human IgG1.
    Isenman DE; Lancet D; Pecht I
    Biochemistry; 1979 Jul; 18(15):3327-36. PubMed ID: 465472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent immunoglobulin assembly in vitro: reactivity of light chain covalent dimers (L2) and blocked light chain monomers.
    Kazin AR; Beychok S
    Science; 1978 Feb; 199(4329):688-90. PubMed ID: 415360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in vitro system for studying the kinetics of interchain disulfide bond formation in immunoglobulin G.
    Petersen JG; Dorrington KJ
    J Biol Chem; 1974 Sep; 249(17):5633-41. PubMed ID: 4212934
    [No Abstract]   [Full Text] [Related]  

  • 16. The mechanism of reassembly of immunoglobulin G.
    Azuma T; Hamaguchi K
    J Biochem; 1976 Nov; 80(5):1023-38. PubMed ID: 12149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-translational modification of nascent immunoglobulin heavy and light chains.
    Bergman LW; Kuehl WM
    J Supramol Struct; 1979; 11(1):9-24. PubMed ID: 118307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of interchain disulfide bonds in Bence Jones proteins and immunoglobulins.
    Kishida F; Azuma T; Hamaguchi K
    J Biochem; 1976 Jan; 79(1):91-105. PubMed ID: 7556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the disulfide bonds of glycoprotein hormones. Course of reduction of bovine luteinizing hormone, bovine thyroid-stimulating hormone, and their subunits.
    Pierce JG; Giudice LC; Reeve JR
    J Biol Chem; 1976 Oct; 251(20):6388-91. PubMed ID: 988020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of disulfide bond reduction in alpha-lactalbumin by dithiothreitol and molecular basis of superreactivity of the Cys6-Cys120 disulfide bond.
    Kuwajima K; Ikeguchi M; Sugawara T; Hiraoka Y; Sugai S
    Biochemistry; 1990 Sep; 29(36):8240-9. PubMed ID: 2123714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.