BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 9538931)

  • 1. Heart failure: is there an energy deficit contributing to contractile dysfunction?
    Vogt AM; Kübler W
    Basic Res Cardiol; 1998 Feb; 93(1):1-10. PubMed ID: 9538931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction.
    Neubauer S; Horn M; Naumann A; Tian R; Hu K; Laser M; Friedrich J; Gaudron P; Schnackerz K; Ingwall JS
    J Clin Invest; 1995 Mar; 95(3):1092-100. PubMed ID: 7883957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enalapril treatment increases cardiac performance and energy reserve via the creatine kinase reaction in myocardium of Syrian myopathic hamsters with advanced heart failure.
    Nascimben L; Friedrich J; Liao R; Pauletto P; Pessina AC; Ingwall JS
    Circulation; 1995 Mar; 91(6):1824-33. PubMed ID: 7882493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial Creatine Kinase Attenuates Pathologic Remodeling in Heart Failure.
    Keceli G; Gupta A; Sourdon J; Gabr R; Schär M; Dey S; Tocchetti CG; Stuber A; Agrimi J; Zhang Y; Leppo M; Steenbergen C; Lai S; Yanek LR; O'Rourke B; Gerstenblith G; Bottomley PA; Wang Y; Paolocci N; Weiss RG
    Circ Res; 2022 Mar; 130(5):741-759. PubMed ID: 35109669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic compartmentation and substrate channelling in muscle cells. Role of coupled creatine kinases in in vivo regulation of cellular respiration--a synthesis.
    Saks VA; Khuchua ZA; Vasilyeva EV; Belikova OYu ; Kuznetsov AV
    Mol Cell Biochem; 1994; 133-134():155-92. PubMed ID: 7808453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy metabolism in heart failure and remodelling.
    Ingwall JS
    Cardiovasc Res; 2009 Feb; 81(3):412-9. PubMed ID: 18987051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico studies on the sensitivity of myocardial PCr/ATP to changes in mitochondrial enzyme activity and oxygen concentration.
    Edwards LM; Ashrafian H; Korzeniewski B
    Mol Biosyst; 2011 Dec; 7(12):3335-42. PubMed ID: 22025222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycolytic buffering affects cardiac bioenergetic signaling and contractile reserve similar to creatine kinase.
    Harrison GJ; van Wijhe MH; de Groot B; Dijk FJ; Gustafson LA; van Beek JH
    Am J Physiol Heart Circ Physiol; 2003 Aug; 285(2):H883-90. PubMed ID: 12714331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered creatine kinase adenosine triphosphate kinetics in failing hypertrophied human myocardium.
    Smith CS; Bottomley PA; Schulman SP; Gerstenblith G; Weiss RG
    Circulation; 2006 Sep; 114(11):1151-8. PubMed ID: 16952984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Pathophysiology of the "hibernating" myocardium].
    Schulz R; Heusch G
    Z Kardiol; 1995; 84 Suppl 4():91-100. PubMed ID: 8585279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP flux through creatine kinase in the normal, stressed, and failing human heart.
    Weiss RG; Gerstenblith G; Bottomley PA
    Proc Natl Acad Sci U S A; 2005 Jan; 102(3):808-13. PubMed ID: 15647364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alteration of the cytosolic-mitochondrial distribution of high-energy phosphates during global myocardial ischemia may contribute to early contractile failure.
    Rauch U; Schulze K; Witzenbichler B; Schultheiss HP
    Circ Res; 1994 Oct; 75(4):760-9. PubMed ID: 7923621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired cardiac energetics in mice lacking muscle-specific isoenzymes of creatine kinase.
    Saupe KW; Spindler M; Tian R; Ingwall JS
    Circ Res; 1998 May; 82(8):898-907. PubMed ID: 9576109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased energy reserve in an animal model of dilated cardiomyopathy. Relationship to contractile performance.
    Liao R; Nascimben L; Friedrich J; Gwathmey JK; Ingwall JS
    Circ Res; 1996 May; 78(5):893-902. PubMed ID: 8620610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase.
    Jacobus WE
    Annu Rev Physiol; 1985; 47():707-25. PubMed ID: 3888084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreased ATP production and myocardial contractile reserve in metabolic heart disease.
    Luptak I; Sverdlov AL; Panagia M; Qin F; Pimentel DR; Croteau D; Siwik DA; Ingwall JS; Bachschmid MM; Balschi JA; Colucci WS
    J Mol Cell Cardiol; 2018 Mar; 116():106-114. PubMed ID: 29409987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A role of PKC in the improvement of energy metabolism in preconditioned heart.
    Yabe K; Tanonaka K; Koshimizu M; Katsuno T; Takeo S
    Basic Res Cardiol; 2000 Jun; 95(3):215-27. PubMed ID: 10879623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations in the myocardial creatine kinase system precede the development of contractile dysfunction in beta(1)-adrenergic receptor transgenic mice.
    Spindler M; Engelhardt S; Niebler R; Wagner H; Hein L; Lohse MJ; Neubauer S
    J Mol Cell Cardiol; 2003 Apr; 35(4):389-97. PubMed ID: 12689818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular energy transport and control of cardiac contraction.
    Saks VA; Kupriyanov VV
    Adv Myocardiol; 1982; 3():475-97. PubMed ID: 6221378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creatine kinase-mediated improvement of function in failing mouse hearts provides causal evidence the failing heart is energy starved.
    Gupta A; Akki A; Wang Y; Leppo MK; Chacko VP; Foster DB; Caceres V; Shi S; Kirk JA; Su J; Lai S; Paolocci N; Steenbergen C; Gerstenblith G; Weiss RG
    J Clin Invest; 2012 Jan; 122(1):291-302. PubMed ID: 22201686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.