These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 9539462)

  • 1. Mechanical characterization of dental ceramics by hertzian contacts.
    Peterson IM; Pajares A; Lawn BR; Thompson VP; Rekow ED
    J Dent Res; 1998 Apr; 77(4):589-602. PubMed ID: 9539462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lifetime-limiting strength degradation from contact fatigue in dental ceramics.
    Jung YG; Peterson IM; Kim DK; Lawn BR
    J Dent Res; 2000 Feb; 79(2):722-31. PubMed ID: 10728973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contact damage resistance and strength degradation of glass-infiltrated alumina and spinel ceramics.
    Jung YG; Peterson IM; Pajares A; Lawn BR
    J Dent Res; 1999 Mar; 78(3):804-14. PubMed ID: 10096457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cementation surface modifications on fracture resistance of zirconia.
    Srikanth R; Kosmac T; Della Bona A; Yin L; Zhang Y
    Dent Mater; 2015 Apr; 31(4):435-42. PubMed ID: 25687628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plastic damage induced fracture behaviors of dental ceramic layer structures subjected to monotonic load.
    Wang R; Lu C; Arola D; Zhang D
    J Prosthodont; 2013 Aug; 22(6):456-64. PubMed ID: 23551817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of microstructure on contact damage and strength degradation of micaceous glass-ceramics.
    Peterson IM; Wuttiphan S; Lawn BR; Chyung K
    Dent Mater; 1998 Jan; 14(1):80-9. PubMed ID: 9972155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical and fracture behavior of veneer-framework composites for all-ceramic dental bridges.
    Studart AR; Filser F; Kocher P; Lüthy H; Gauckler LJ
    Dent Mater; 2007 Jan; 23(1):115-23. PubMed ID: 16473403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-ceramic fixed partial dentures. Studies on aluminum oxide- and zirconium dioxide-based ceramic systems.
    Vult von Steyern P
    Swed Dent J Suppl; 2005; (173):1-69. PubMed ID: 16001730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of framework design on fracture strength of mandibular anterior all-ceramic resin-bonded fixed partial dentures.
    Koutayas SO; Kern M; Ferraresso F; Strub JR
    Int J Prosthodont; 2002; 15(3):223-9. PubMed ID: 12066484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of multiple firings on the mechanical properties and microstructure of veneering ceramics for zirconia frameworks.
    Tang X; Nakamura T; Usami H; Wakabayashi K; Yatani H
    J Dent; 2012 May; 40(5):372-80. PubMed ID: 22330322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical fatigue degradation of ceramics versus resin composites for dental restorations.
    Belli R; Geinzer E; Muschweck A; Petschelt A; Lohbauer U
    Dent Mater; 2014 Apr; 30(4):424-32. PubMed ID: 24553249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of processing induced particle alignment on the fracture toughness and fracture behavior of multiphase dental ceramics.
    Gonzaga CC; Okada CY; Cesar PF; Miranda WG; Yoshimura HN
    Dent Mater; 2009 Nov; 25(11):1293-301. PubMed ID: 19570570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fracture resistance of lithium disilicate-, alumina-, and zirconia-based three-unit fixed partial dentures: a laboratory study.
    Tinschert J; Natt G; Mautsch W; Augthun M; Spiekermann H
    Int J Prosthodont; 2001; 14(3):231-8. PubMed ID: 11484570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bond strength of the porcelain repair system to all-ceramic copings and porcelain.
    Lee SJ; Cheong CW; Wright RF; Chang BM
    J Prosthodont; 2014 Feb; 23(2):112-6. PubMed ID: 23725343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexural strength of glass-infiltrated zirconia/alumina-based ceramics and feldspathic veneering porcelains.
    Bottino MA; Salazar-Marocho SM; Leite FP; Vásquez VC; Valandro LF
    J Prosthodont; 2009 Jul; 18(5):417-20. PubMed ID: 19432762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Failure responses of a dental porcelain having three surface treatments under three stressing conditions.
    Yi YJ; Kelly JR
    Dent Mater; 2011 Dec; 27(12):1252-8. PubMed ID: 21975307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hertzian contact response and damage tolerance of dental ceramics.
    Coldea A; Swain MV; Thiel N
    J Mech Behav Biomed Mater; 2014 Jun; 34():124-33. PubMed ID: 24566383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of core thickness differences on post-fatigue indentation fracture resistance of veneered zirconia crowns.
    Alhasanyah A; Vaidyanathan TK; Flinton RJ
    J Prosthodont; 2013 Jul; 22(5):383-90. PubMed ID: 23387466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics.
    Guazzato M; Albakry M; Ringer SP; Swain MV
    Dent Mater; 2004 Jun; 20(5):441-8. PubMed ID: 15081550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow crack growth and reliability of dental ceramics.
    Gonzaga CC; Cesar PF; Miranda WG; Yoshimura HN
    Dent Mater; 2011 Apr; 27(4):394-406. PubMed ID: 21185074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.