These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 9539728)
1. Membrane-bound state of the colicin E1 channel domain as an extended two-dimensional helical array. Zakharov SD; Lindeberg M; Griko Y; Salamon Z; Tollin G; Prendergast FG; Cramer WA Proc Natl Acad Sci U S A; 1998 Apr; 95(8):4282-7. PubMed ID: 9539728 [TBL] [Abstract][Full Text] [Related]
2. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1. Elkins P; Bunker A; Cramer WA; Stauffacher CV Structure; 1997 Mar; 5(3):443-58. PubMed ID: 9083117 [TBL] [Abstract][Full Text] [Related]
3. Unfolding pathway of the colicin E1 channel protein on a membrane surface. Lindeberg M; Zakharov SD; Cramer WA J Mol Biol; 2000 Jan; 295(3):679-92. PubMed ID: 10623556 [TBL] [Abstract][Full Text] [Related]
4. Fluorescence energy transfer distance measurements. The hydrophobic helical hairpin of colicin A in the membrane bound state. Lakey JH; Duché D; González-Mañas JM; Baty D; Pattus F J Mol Biol; 1993 Apr; 230(3):1055-67. PubMed ID: 7683055 [TBL] [Abstract][Full Text] [Related]
5. Colicin crystal structures: pathways and mechanisms for colicin insertion into membranes. Zakharov SD; Cramer WA Biochim Biophys Acta; 2002 Oct; 1565(2):333-46. PubMed ID: 12409205 [TBL] [Abstract][Full Text] [Related]
6. Insertion intermediates of pore-forming colicins in membrane two-dimensional space. Zakharov SD; Cramer WA Biochimie; 2002; 84(5-6):465-75. PubMed ID: 12423790 [TBL] [Abstract][Full Text] [Related]
7. Constraints imposed by protease accessibility on the trans-membrane and surface topography of the colicin E1 ion channel. Zhang YL; Cramer WA Protein Sci; 1992 Dec; 1(12):1666-76. PubMed ID: 1284805 [TBL] [Abstract][Full Text] [Related]
8. Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers. Kim Y; Valentine K; Opella SJ; Schendel SL; Cramer WA Protein Sci; 1998 Feb; 7(2):342-8. PubMed ID: 9521110 [TBL] [Abstract][Full Text] [Related]
9. Kinetic description of structural changes linked to membrane import of the colicin E1 channel protein. Zakharov SD; Lindeberg M; Cramer WA Biochemistry; 1999 Aug; 38(35):11325-32. PubMed ID: 10471282 [TBL] [Abstract][Full Text] [Related]
10. Orientational distribution of alpha-helices in the colicin B and E1 channel domains: a one and two dimensional 15N solid-state NMR investigation in uniaxially aligned phospholipid bilayers. Lambotte S; Jasperse P; Bechinger B Biochemistry; 1998 Jan; 37(1):16-22. PubMed ID: 9453746 [TBL] [Abstract][Full Text] [Related]
11. Uncoupled steps of the colicin A pore formation demonstrated by disulfide bond engineering. Duché D; Parker MW; González-Mañas JM; Pattus F; Baty D J Biol Chem; 1994 Mar; 269(9):6332-9. PubMed ID: 8119982 [TBL] [Abstract][Full Text] [Related]
12. Folded state of the integral membrane colicin E1 immunity protein in solvents of mixed polarity. Taylor RM; Zakharov SD; Bernard Heymann J; Girvin ME; Cramer WA Biochemistry; 2000 Oct; 39(40):12131-9. PubMed ID: 11015191 [TBL] [Abstract][Full Text] [Related]
13. Fourier transform infrared evidence for a predominantly alpha-helical structure of the membrane bound channel forming COOH-terminal peptide of colicin E1. Rath P; Bousché O; Merrill AR; Cramer WA; Rothschild KJ Biophys J; 1991 Mar; 59(3):516-22. PubMed ID: 1710937 [TBL] [Abstract][Full Text] [Related]
14. Structural stability and domain organization of colicin E1. Griko YV; Zakharov SD; Cramer WA J Mol Biol; 2000 Sep; 302(4):941-53. PubMed ID: 10993734 [TBL] [Abstract][Full Text] [Related]
15. Evidence for the amphipathic nature and tilted topology of helices 4 and 5 in the closed state of the colicin E1 channel. Ho D; Merrill AR Biochemistry; 2009 Feb; 48(6):1369-80. PubMed ID: 19159330 [TBL] [Abstract][Full Text] [Related]
16. Resolving the 3D spatial orientation of helix I in the closed state of the colicin E1 channel domain by FRET. Insights into the integration mechanism. Lugo MR; Ho D; Merrill AR Arch Biochem Biophys; 2016 Oct; 608():52-73. PubMed ID: 27596846 [TBL] [Abstract][Full Text] [Related]
17. Toward elucidating the membrane topology of helix two of the colicin E1 channel domain. White D; Musse AA; Wang J; London E; Merrill AR J Biol Chem; 2006 Oct; 281(43):32375-84. PubMed ID: 16854987 [TBL] [Abstract][Full Text] [Related]
18. Adventures in membrane protein topology. A study of the membrane-bound state of colicin E1. Tory MC; Merrill AR J Biol Chem; 1999 Aug; 274(35):24539-49. PubMed ID: 10455117 [TBL] [Abstract][Full Text] [Related]
19. Membrane partitioning of the pore-forming domain of colicin A. Role of the hydrophobic helical hairpin. Bermejo IL; Arnulphi C; Ibáñez de Opakua A; Alonso-Mariño M; Goñi FM; Viguera AR Biophys J; 2013 Sep; 105(6):1432-43. PubMed ID: 24047995 [TBL] [Abstract][Full Text] [Related]
20. Solid-state NMR investigation of the dynamics of the soluble and membrane-bound colicin Ia channel-forming domain. Huster D; Xiao L; Hong M Biochemistry; 2001 Jun; 40(25):7662-74. PubMed ID: 11412120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]