BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 9540048)

  • 1. Entrainment, instability, quasi-periodicity, and chaos in a compound neural oscillator.
    Matsugu M; Duffin J; Poon CS
    J Comput Neurosci; 1998 Mar; 5(1):35-51. PubMed ID: 9540048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Introduction of respiratory pattern generators into models of respiratory control.
    Longobardo G; Evangelisti CJ; Cherniack NS
    Respir Physiol Neurobiol; 2005 Oct; 148(3):285-301. PubMed ID: 16143285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling neural mechanisms for genesis of respiratory rhythm and pattern. II. Network models of the central respiratory pattern generator.
    Rybak IA; Paton JF; Schwaber JS
    J Neurophysiol; 1997 Apr; 77(4):2007-26. PubMed ID: 9114251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple rhythmic states in a model of the respiratory central pattern generator.
    Rubin JE; Shevtsova NA; Ermentrout GB; Smith JC; Rybak IA
    J Neurophysiol; 2009 Apr; 101(4):2146-65. PubMed ID: 19193773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of oscillation periods and phase durations in half-center central pattern generators: a comparative mechanistic analysis.
    Daun S; Rubin JE; Rybak IA
    J Comput Neurosci; 2009 Aug; 27(1):3-36. PubMed ID: 19130197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear behavior of sinusoidally forced pyloric pacemaker neurons.
    Szücs A; Elson RC; Rabinovich MI; Abarbanel HD; Selverston AI
    J Neurophysiol; 2001 Apr; 85(4):1623-38. PubMed ID: 11287486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling neural mechanisms for genesis of respiratory rhythm and pattern. I. Models of respiratory neurons.
    Rybak IA; Paton JF; Schwaber JS
    J Neurophysiol; 1997 Apr; 77(4):1994-2006. PubMed ID: 9114250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periodicity and chaos in electrically coupled Hindmarsh-Rose neurons.
    Erichsen R; Mainieri MS; Brunnet LG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061906. PubMed ID: 17280095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interacting biological and electronic neurons generate realistic oscillatory rhythms.
    Szucs A; Varona P; Volkovskii AR; Abarbanel HD; Rabinovich MI; Selverston AI
    Neuroreport; 2000 Feb; 11(3):563-9. PubMed ID: 10718315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formal analysis of resonance entrainment by central pattern generator.
    Futakata Y; Iwasaki T
    J Math Biol; 2008 Aug; 57(2):183-207. PubMed ID: 18175118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General principles of rhythmogenesis in central pattern generator networks.
    Harris-Warrick RM
    Prog Brain Res; 2010; 187():213-22. PubMed ID: 21111210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modeling approach on why simple central pattern generators are built of irregular neurons.
    Reyes MB; Carelli PV; Sartorelli JC; Pinto RD
    PLoS One; 2015; 10(3):e0120314. PubMed ID: 25799556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spiking resonances in models with the same slow resonant and fast amplifying currents but different subthreshold dynamic properties.
    Rotstein HG
    J Comput Neurosci; 2017 Dec; 43(3):243-271. PubMed ID: 29064059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Common asymptotic behavior of solutions and almost periodicity for discontinuous, delayed, and impulsive neural networks.
    Allegretto W; Papini D; Forti M
    IEEE Trans Neural Netw; 2010 Jul; 21(7):1110-25. PubMed ID: 20562046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A network of electronic neural oscillators reproduces the dynamics of the periodically forced pyloric pacemaker group.
    Denker M; Szücs A; Pinto RD; Abarbanel HD; Selverston AI
    IEEE Trans Biomed Eng; 2005 May; 52(5):792-8. PubMed ID: 15887528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronization from disordered driving forces in arrays of coupled oscillators.
    Brandt SF; Dellen BK; Wessel R
    Phys Rev Lett; 2006 Jan; 96(3):034104. PubMed ID: 16486707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periodicity, mixed-mode oscillations, and quasiperiodicity in a rhythm-generating neural network.
    Del Negro CA; Wilson CG; Butera RJ; Rigatto H; Smith JC
    Biophys J; 2002 Jan; 82(1 Pt 1):206-14. PubMed ID: 11751309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic behavior of a neural network model of locomotor control in the lamprey.
    Jung R; Kiemel T; Cohen AH
    J Neurophysiol; 1996 Mar; 75(3):1074-86. PubMed ID: 8867119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State-dependent rhythmogenesis and frequency control in a half-center locomotor CPG.
    Ausborn J; Snyder AC; Shevtsova NA; Rybak IA; Rubin JE
    J Neurophysiol; 2018 Jan; 119(1):96-117. PubMed ID: 28978767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of entrainment of a nonlinear neural oscillator to white noise.
    Ritt J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 1):041915. PubMed ID: 14682981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.