These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 9540068)

  • 1. X-ray small angle scattering study of chromatin as a function of fiber length.
    Maccioni E; Vergani L; Dembo A; Mascetti G; Nicolini C
    Mol Biol Rep; 1998 Mar; 25(2):73-86. PubMed ID: 9540068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin structure revealed by X-ray scattering analysis and computational modeling.
    Maeshima K; Imai R; Hikima T; Joti Y
    Methods; 2014 Dec; 70(2-3):154-61. PubMed ID: 25168089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchrotron X-ray scattering study of chromatin condensation induced by monovalent salt: analysis of the small-angle scattering data.
    Fujiwara S; Inoko Y; Ueki T
    J Biochem; 1989 Jul; 106(1):119-25. PubMed ID: 2777743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretation of the X-ray scattering profiles of chromatin at various NaCl concentrations by a simple chain model.
    Fujiwara S
    Biophys Chem; 1992 May; 43(1):81-7. PubMed ID: 1633260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small angle scattering of cell nuclei.
    Notbohm H
    Eur Biophys J; 1986; 13(6):367-72. PubMed ID: 3757931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The superstructure of chromatin and its condensation mechanism. III: Effect of monovalent and divalent cations X-ray solution scattering and hydrodynamic studies.
    Koch MH; Vega MC; Sayers Z; Michon AM
    Eur Biophys J; 1987; 14(5):307-19. PubMed ID: 3569164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small angle x-ray scattering of chromatin. Radius and mass per unit length depend on linker length.
    Williams SP; Langmore JP
    Biophys J; 1991 Mar; 59(3):606-18. PubMed ID: 2049522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polarized light scattering of nucleosomes and polynucleosomes--in situ and in vitro studies.
    Diaspro A; Bertolotto M; Vergani L; Nicolini C
    IEEE Trans Biomed Eng; 1991 Jul; 38(7):670-8. PubMed ID: 1879860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The solubility of calf thymus chromatin in sodium chloride.
    Davies KE; Walker IO
    Nucleic Acids Res; 1974 Jan; 1(1):129-39. PubMed ID: 10793666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray scattering evidence that calf thymus DNA in solution is a double helix and not a warped zipper.
    Müller JJ; Damaschun G; Damaschun H; Misselwitz R; Zirwer D; Nothnagel A
    Biomed Biochim Acta; 1984; 43(7):929-36. PubMed ID: 6517888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Quasielastic light scattering of isolated chromatin].
    Meuel B; Notbohm H
    Z Naturforsch C Biosci; 1983; 38(1-2):126-34. PubMed ID: 6845814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational modeling predicts the structure and dynamics of chromatin fiber.
    Beard DA; Schlick T
    Structure; 2001 Feb; 9(2):105-14. PubMed ID: 11250195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition of chromatin from the "10 nm" lower order structure, to the "30 nm" higher order structure as followed by small angle X-ray scattering.
    Greulich KO; Wachtel E; Ausio J; Seger D; Eisenberg H
    J Mol Biol; 1987 Feb; 193(4):709-21. PubMed ID: 3612790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution structural studies of chromatin fibers.
    Lee KS; Mandelkern M; Crothers DM
    Biochemistry; 1981 Mar; 20(6):1438-45. PubMed ID: 7225342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quaternary structure of chromatin.
    Bram S; Butler-Browne G; Baudy P; Ibel K
    Proc Natl Acad Sci U S A; 1975 Mar; 72(3):1043-5. PubMed ID: 1055363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study of the process of chromatin condensation using light scattering and stop-flow technics].
    Smirnov IV; Makarov VL; Dimitrov SI
    Mol Biol (Mosk); 1987; 21(5):1392-9. PubMed ID: 3683382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid simulation of wide-angle scattering from mitochondria in single cells.
    Pilarski PM; Su XT; Glerum DM; Backhouse CJ
    Opt Express; 2008 Aug; 16(17):12819-34. PubMed ID: 18711521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Native chromatin and damage induced by nuclease.
    Nicolini C; Vergani L; Diaspro A; Scelza P
    Biochem Biophys Res Commun; 1988 Sep; 155(3):1396-403. PubMed ID: 3178817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How many base-pairs per turn does DNA have in solution and in chromatin? An answer from wide-angle X-ray scattering.
    Damaschun G; Damaschun H; Misselwitz R; Pospelov VA; Zalenskaya IA; Zirwer D; Müller JJ; Vorobev VI
    Biomed Biochim Acta; 1983; 42(6):697-703. PubMed ID: 6639645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partially folded states of proteins: characterization by X-ray scattering.
    Doniach S; Bascle J; Garel T; Orland H
    J Mol Biol; 1995 Dec; 254(5):960-7. PubMed ID: 7500363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.