These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 954019)
21. Effects of tanshinone VI derivatives on post-hypoxic contractile dysfunction of perfused rat hearts. Yagi A; Okamura N; Tanonaka K; Takeo S Planta Med; 1994 Oct; 60(5):405-9. PubMed ID: 7997465 [TBL] [Abstract][Full Text] [Related]
22. Effect of glucose on enzyme release from, and recovery of, the anoxic myocardium. Hearse DJ; Chain EB Recent Adv Stud Cardiac Struct Metab; 1973; 3():763-72. PubMed ID: 4806677 [No Abstract] [Full Text] [Related]
23. Postischaemic metabolic and functional recovery of rat heart after transient reperfusion with various low Ca2+ concentrations. Schreur JH; Kirkels JH; van Echteld CJ; Ruigrok TJ Cardiovasc Res; 1992 Jul; 26(7):687-93. PubMed ID: 1423433 [TBL] [Abstract][Full Text] [Related]
24. Effect of hyaluronidase and methylprednisolone on myocardial function, glucose metabolism, and coronary flow in the isolated ischemic rat heart. Rovetto MJ Circ Res; 1977 Sep; 41(3):373-9. PubMed ID: 890892 [TBL] [Abstract][Full Text] [Related]
25. Sarcolemmal Na+-Ca2+ exchange activity in hearts subjected to hypoxia reoxygenation. Dixon IM; Eyolfson DA; Dhalla NS Am J Physiol; 1987 Nov; 253(5 Pt 2):H1026-34. PubMed ID: 3688247 [TBL] [Abstract][Full Text] [Related]
26. Possible involvement of membrane-stabilizing action in beneficial effect of beta adrenoceptor blocking agents on hypoxic and posthypoxic myocardium. Takeo S; Yamada H; Tanonaka K; Hayashi M; Sunagawa N J Pharmacol Exp Ther; 1990 Sep; 254(3):847-56. PubMed ID: 1975623 [TBL] [Abstract][Full Text] [Related]
27. Interaction of hypoxia and aging in the heart: analysis of high energy phosphate content. Bak MI; Wei JY; Ingwall JS J Mol Cell Cardiol; 1998 Mar; 30(3):661-72. PubMed ID: 9515041 [TBL] [Abstract][Full Text] [Related]
28. Evidence for succinate production by reduction of fumarate during hypoxia in isolated adult rat heart cells. Hohl C; Oestreich R; Rösen P; Wiesner R; Grieshaber M Arch Biochem Biophys; 1987 Dec; 259(2):527-35. PubMed ID: 3426243 [TBL] [Abstract][Full Text] [Related]
29. [Metabolism of extracellular phosphocreatine during changes in the ionic composition of the medium in the perfused rat heart]. Alabovskiĭ VV; Vinokurov AA Biokhimiia; 1992 Oct; 57(10):1532-9. PubMed ID: 1457597 [TBL] [Abstract][Full Text] [Related]
30. The change of the free energy of ATP hydrolysis during global ischemia and anoxia in the rat heart. Its possible role in the regulation of transsarcolemmal sodium and potassium gradients. Fiolet JW; Baartscheer A; Schumacher CA; Coronel R; ter Welle HF J Mol Cell Cardiol; 1984 Nov; 16(11):1023-36. PubMed ID: 6520874 [TBL] [Abstract][Full Text] [Related]
31. Mitochondrial respiration following acute hypoxia in the perfused rat heart. Fuller EO; Goldberg DI; Starnes JW; Sacks LM; Delivoria-Papadopoulos M J Mol Cell Cardiol; 1985 Jan; 17(1):71-81. PubMed ID: 3989872 [TBL] [Abstract][Full Text] [Related]
32. Preconditioning and post-ischaemic contractile dysfunction: the role of impaired oxygen delivery vs extracellular metabolite accumulation. Zhai X; Lawson CS; Cave AC; Hearse DJ J Mol Cell Cardiol; 1993 Jul; 25(7):847-57. PubMed ID: 8230245 [TBL] [Abstract][Full Text] [Related]
33. Intracellular [Ca2+] staircase in the isovolumic pressure--frequency relationship of Langendorff-perfused rat heart. Field ML; Azzawi A; Unitt JF; Seymour AM; Henderson C; Radda GK J Mol Cell Cardiol; 1996 Jan; 28(1):65-77. PubMed ID: 8745215 [TBL] [Abstract][Full Text] [Related]
34. Relations between the energy state of the myocardium and release of some products of anaerobic metabolism during underperfusion. Pisarenko OI; Studneva IM; Shulzhenko VS; Kapelko VI Pflugers Arch; 1990 Jun; 416(4):434-41. PubMed ID: 2399116 [TBL] [Abstract][Full Text] [Related]
35. Contractile failure and high-energy phosphate turnover during hypoxia: 31P-NMR surface coil studies in living rat. Bittl JA; Balschi JA; Ingwall JS Circ Res; 1987 Jun; 60(6):871-8. PubMed ID: 2954720 [TBL] [Abstract][Full Text] [Related]
36. Effects of high-energy phosphate depletion and repletion on the dynamics and electrocardiogram of isolated rat hearts. Scheuer J; Stezoski SW Circ Res; 1968 Oct; 23(4):519-30. PubMed ID: 5677943 [No Abstract] [Full Text] [Related]
37. Low sodium attenuation of the Ca2+ paradox in the newborn rabbit myocardium. Uemura S; Young H; Matsuoka S; Jarmakani JM Am J Physiol; 1985 Mar; 248(3 Pt 2):H345-9. PubMed ID: 2579586 [TBL] [Abstract][Full Text] [Related]
38. Relationship between coronary flow and high energy phosphates in the isolated perfused rat heart, with special reference to the effects of anoxia, iodoacetic acid, and 2,4-dinitrophenol. Shibano T; Abiko Y Methods Find Exp Clin Pharmacol; 1989 Sep; 11(9):567-75. PubMed ID: 2586203 [TBL] [Abstract][Full Text] [Related]
39. The relationship between myocardial enzyme release and Ca2+ uptake during hypoxia and reoxygenation in the newborn and adult heart. Nakanishi T; Young HH; Shimizu T; Nishioka K; Jarmakani JM J Mol Cell Cardiol; 1984 Jun; 16(6):519-32. PubMed ID: 6748087 [TBL] [Abstract][Full Text] [Related]
40. Vascular washout reduces Ca2+ overload and improves function of reperfused ischemic hearts. Tani M; Neely JR Am J Physiol; 1990 Feb; 258(2 Pt 2):H354-61. PubMed ID: 2309903 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]