These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9540204)

  • 1. Change in the binding of hydrogen ions and magnesium ions in the hydrolysis of ATP.
    Alberty RA
    Biophys Chem; 1998 Feb; 70(2):109-19. PubMed ID: 9540204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative mathematical expressions for accurate in vivo assessment of cytosolic [ADP] and DeltaG of ATP hydrolysis in the human brain and skeletal muscle.
    Iotti S; Frassineti C; Sabatini A; Vacca A; Barbiroli B
    Biochim Biophys Acta; 2005 Jun; 1708(2):164-77. PubMed ID: 15953473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adjustment of K' to varying pH and pMg for the creatine kinase, adenylate kinase and ATP hydrolysis equilibria permitting quantitative bioenergetic assessment.
    Golding EM; Teague WE; Dobson GP
    J Exp Biol; 1995 Aug; 198(Pt 8):1775-82. PubMed ID: 7636446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of the arginine kinase reaction.
    Teague WE; Dobson GP
    J Biol Chem; 1999 Aug; 274(32):22459-63. PubMed ID: 10428820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Standard thermodynamic formation properties for the adenosine 5'-triphosphate series.
    Alberty RA; Goldberg RN
    Biochemistry; 1992 Nov; 31(43):10610-5. PubMed ID: 1420176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do ATP4- and Mg2+ bind stepwise to the F1-ATPase of Halobacterium saccharovorum?
    Schobert B
    Eur J Biochem; 1998 Jun; 254(2):363-70. PubMed ID: 9660192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamics of the disproportionation of adenosine 5'-diphosphate to adenosine 5'-triphosphate and adenosine 5'-monophosphate, II. Experimental data.
    Tewari YB; Goldberg RN; Advani JV
    Biophys Chem; 1991 Jul; 40(3):263-76. PubMed ID: 17014782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calorimetric determination of the standard transformed enthalpy of a biochemical reaction at specified pH and pMg.
    Alberty RA; Goldberg RN
    Biophys Chem; 1993 Oct; 47(3):213-23. PubMed ID: 8241417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic properties of nucleotide reductase reactions.
    Alberty RA
    Biochemistry; 2004 Aug; 43(30):9840-5. PubMed ID: 15274638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of pH and free Mg2+ on ATP linked enzymes and the calculation of Gibbs free energy of ATP hydrolysis.
    Bergman C; Kashiwaya Y; Veech RL
    J Phys Chem B; 2010 Dec; 114(49):16137-46. PubMed ID: 20866109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adjustment of K' for the creatine kinase, adenylate kinase and ATP hydrolysis equilibria to varying temperature and ionic strength.
    Teague WE; Golding EM; Dobson GP
    J Exp Biol; 1996 Feb; 199(Pt 2):509-12. PubMed ID: 8930003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction mechanism of the magnesium ion-dependent adenosine triphosphatase of frog muscle myosin and subfragment 1.
    Ferenczi MA; Homsher E; Simmons RM; Trentham DR
    Biochem J; 1978 Apr; 171(1):165-75. PubMed ID: 148277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gastric H/K-ATPase liberates two moles of Pi from one mole of phosphoenzyme formed from a high-affinity ATP binding site and one mole of enzyme-bound ATP at the low-affinity site during cross-talk between catalytic subunits.
    Abe K; Kaya S; Imagawa T; Taniguchi K
    Biochemistry; 2002 Feb; 41(7):2438-45. PubMed ID: 11841238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of bound potassium ions in the hydrolysis of low concentrations of adenosine triphosphate by preparations of membrane fragments from ox brain cerebral cortex.
    Goldfarb PS; Rodnight R
    Biochem J; 1970 Nov; 120(1):15-24. PubMed ID: 4250237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics of the pyruvate kinase reaction and the reversal of glycolysis in heart and skeletal muscle.
    Dobson GP; Hitchins S; Teague WE
    J Biol Chem; 2002 Jul; 277(30):27176-82. PubMed ID: 11986306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Levels of thermodynamic treatment of biochemical reaction systems.
    Alberty RA
    Biophys J; 1993 Sep; 65(3):1243-54. PubMed ID: 8241405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myocardial ischemic contracture. Metabolites affect rigor tension development and stiffness.
    Ventura-Clapier R; Veksler V
    Circ Res; 1994 May; 74(5):920-9. PubMed ID: 8156639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic studies on the ADP-ATP exchange reaction catalyzed by Na+, K+-dependent ATPase. Evidence for the K.S.T. mechanism with two enzyme-ATP complexes and two phosphorylated intermediates of high-energy type.
    Yamaguchi M; Tonomura Y
    J Biochem; 1977 Jan; 81(1):249-60. PubMed ID: 14933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of adenosine triphosphate hydrolysis by shortening myofibrils from rabbit psoas muscle.
    Ohno T; Kodama T
    J Physiol; 1991 Sep; 441():685-702. PubMed ID: 1816389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exchange between inorganic phosphate and adenosine triphosphate in (Na+,K+)-ATPase.
    Gonçalves de Moraes VL; De Meis L
    Biochim Biophys Acta; 1982 May; 688(1):131-7. PubMed ID: 6284227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.