BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 9541009)

  • 1. The Na+,K+-ATPase carrying the carboxy-terminal Ca2+/calmodulin binding domain of the Ca2+ pump has 2Na+,2K+ stoichiometry and lost charge movement in Na+/Na+ exchange.
    Yoshimura SH; Vasilets LA; Ishii T; Takeyasu K; Schwarz W
    FEBS Lett; 1998 Mar; 425(1):71-4. PubMed ID: 9541009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Ca2+/calmodulin binding domain of the Ca2+-ATPase linked to the Na+,K+-ATPase alters transport stoichiometry.
    Zhao J; Vasilets LA; Yoshimura SH; Gu Q; Ishii T; Takeyasu K; Schwarz W
    FEBS Lett; 1997 May; 408(3):271-5. PubMed ID: 9188774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport activity of a chimeric Na+,K(+)-ATPase with Ca2+/calmodulin binding domain from Ca(2+)-ATPase in Xenopus oocytes.
    Zhao J; Vasilets LA; Gu Q; Ishii T; Takeyasu K; Schwarz W
    Ann N Y Acad Sci; 1997 Nov; 834():372-5. PubMed ID: 9405827
    [No Abstract]   [Full Text] [Related]  

  • 4. The C-terminal 165 amino acids of the plasma membrane Ca(2+)-ATPase confer Ca2+/calmodulin sensitivity on the Na+,K(+)-ATPase alpha-subunit.
    Ishii T; Takeyasu K
    EMBO J; 1995 Jan; 14(1):58-67. PubMed ID: 7828596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of the Na+/K+-ATPase from Torpedo californica expressed in Xenopus oocytes: a combination of tracer flux measurements with electrophysiological measurements.
    Schwarz W; Gu QB
    Biochim Biophys Acta; 1988 Nov; 945(2):167-74. PubMed ID: 2847790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ouabain- and Ca2(+)-sensitive ATPase activity of chimeric Na- and Ca-pump molecules.
    Luckie DB; Boyd KL; Takeyasu K
    FEBS Lett; 1991 Apr; 281(1-2):231-4. PubMed ID: 1849839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arginine substitution of a cysteine in transmembrane helix M8 converts Na+,K+-ATPase to an electroneutral pump similar to H+,K+-ATPase.
    Holm R; Khandelwal J; Einholm AP; Andersen JP; Artigas P; Vilsen B
    Proc Natl Acad Sci U S A; 2017 Jan; 114(2):316-321. PubMed ID: 28028214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carboxy-terminal regions of the sarcoplasmic/endoplasmic reticulum Ca(2+)- and the Na+/K(+)-ATPases control their K+ sensitivity.
    Ishii T; Hata F; Lemas MV; Fambrough DM; Takeyasu K
    Biochemistry; 1997 Jan; 36(2):442-51. PubMed ID: 9003197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The amino-terminal 200 amino acids of the plasma membrane Na+,K+-ATPase alpha subunit confer ouabain sensitivity on the sarcoplasmic reticulum Ca(2+)-ATPase.
    Ishii T; Takeyasu K
    Proc Natl Acad Sci U S A; 1993 Oct; 90(19):8881-5. PubMed ID: 8415625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Na(+)-, ouabain-, Ca(2+)-, and thapsigargin-sensitive ATPase activity expressed in chimeras between the calcium and the sodium pump alpha subunits.
    Ishii T; Lemas MV; Takeyasu K
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):6103-7. PubMed ID: 8016122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significance of the glutamic acid residues Glu334, Glu959, and Glu960 of the alpha subunits of Torpedo Na+, K+ pumps for transport activity and ouabain binding.
    Vasilets LA; Takeda K; Kawamura M; Schwarz W
    Biochim Biophys Acta; 1998 Jan; 1368(1):137-49. PubMed ID: 9459592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutation to the glutamate in the fourth membrane segment of Na+,K+-ATPase and Ca2+-ATPase affects cation binding from both sides of the membrane and destabilizes the occluded enzyme forms.
    Vilsen B; Andersen JP
    Biochemistry; 1998 Aug; 37(31):10961-71. PubMed ID: 9692989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The third sodium binding site of Na,K-ATPase is functionally linked to acidic pH-activated inward current.
    Li C; Geering K; Horisberger JD
    J Membr Biol; 2006; 213(1):1-9. PubMed ID: 17347782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrogenicity of Na,K- and H,K-ATPase activity and presence of a positively charged amino acid in the fifth transmembrane segment.
    Burnay M; Crambert G; Kharoubi-Hess S; Geering K; Horisberger JD
    J Biol Chem; 2003 May; 278(21):19237-44. PubMed ID: 12637496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dissection of functional domains of the E1E2-ATPase using sodium and calcium pump chimeric molecules.
    Luckie DB; Lemas V; Boyd KL; Fambrough DM; Takeyasu K
    Biophys J; 1992 Apr; 62(1):220-6; discussion 226-7. PubMed ID: 1318102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered stoichiometry of the Na,K-ATPase.
    Blostein R; Polvani C
    Acta Physiol Scand Suppl; 1992; 607():105-10. PubMed ID: 1333147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of Ca2+-ATPase, ATP-dependent Ca2+-transport, calmodulin and vitamin D-dependent Ca2+-binding protein along the villus-crypt axis in rat duodenum.
    van Corven EJ; Roche C; van Os CH
    Biochim Biophys Acta; 1985 Nov; 820(2):274-82. PubMed ID: 2996600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ATPase activity of saponin-treated rat erythrocytes: regulation by monovalent cations, calcium, ouabain, and furosemide.
    Petrunyaka VV; Panyushkina EA; Severina EP; Orlov SN
    Biochim Biophys Acta; 1990 Dec; 1030(2):279-88. PubMed ID: 2175654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Up-regulation of sodium pump activity in Xenopus laevis oocytes by expression of heterologous beta 1 subunits of the sodium pump.
    Schmalzing G; Gloor S; Omay H; Kröner S; Appelhans H; Schwarz W
    Biochem J; 1991 Oct; 279 ( Pt 2)(Pt 2):329-36. PubMed ID: 1719955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular pH modulates kinetics of the Na(+),K(+)-ATPase.
    Salonikidis PS; Kirichenko SN; Tatjanenko LV; Schwarz W; Vasilets LA
    Biochim Biophys Acta; 2000 Dec; 1509(1-2):496-504. PubMed ID: 11118558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.