BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 9542584)

  • 61. mdx muscle pathology is independent of nNOS perturbation.
    Crosbie RH; Straub V; Yun HY; Lee JC; Rafael JA; Chamberlain JS; Dawson VL; Dawson TM; Campbell KP
    Hum Mol Genet; 1998 May; 7(5):823-9. PubMed ID: 9536086
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Changes in the distribution and density of caveolin 3 molecules at the plasma membrane of mdx mouse skeletal muscles: a fracture-label electron microscopic study.
    Shibuya S; Wakayama Y; Inoue M; Oniki H; Kominami E
    Neurosci Lett; 2002 Jun; 325(3):171-4. PubMed ID: 12044648
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells.
    Anderson JE
    Mol Biol Cell; 2000 May; 11(5):1859-74. PubMed ID: 10793157
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Immunolocalization of caveolin-1 and caveolin-3 in monkey skeletal, cardiac and uterine smooth muscles.
    Hagiwara Y; Nishina Y; Yorifuji H; Kikuchi T
    Cell Struct Funct; 2002 Oct; 27(5):375-82. PubMed ID: 12502892
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Interaction of neuronal nitric-oxide synthase with caveolin-3 in skeletal muscle. Identification of a novel caveolin scaffolding/inhibitory domain.
    Venema VJ; Ju H; Zou R; Venema RC
    J Biol Chem; 1997 Nov; 272(45):28187-90. PubMed ID: 9353265
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Functional muscle ischemia in neuronal nitric oxide synthase-deficient skeletal muscle of children with Duchenne muscular dystrophy.
    Sander M; Chavoshan B; Harris SA; Iannaccone ST; Stull JT; Thomas GD; Victor RG
    Proc Natl Acad Sci U S A; 2000 Dec; 97(25):13818-23. PubMed ID: 11087833
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A new look at cytoskeletal NOS-1 and β-dystroglycan changes in developing muscle and brain in control and mdx dystrophic mice.
    Janke A; Upadhaya R; Snow WM; Anderson JE
    Dev Dyn; 2013 Dec; 242(12):1369-81. PubMed ID: 23940011
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The susceptibility of muscle cells to oxidative stress is independent of nitric oxide synthase expression.
    Zhuang W; Eby JC; Cheong M; Mohapatra PK; Bredt DS; Disatnik MH; Rando TA
    Muscle Nerve; 2001 Apr; 24(4):502-11. PubMed ID: 11268022
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Histological determination of nitric oxide synthase (NOS) and NADPH-diaphorase in ragged-red fibers from patients with mitochondrial encephalomyopathies.
    Ohkoshi N; Mizusawa H; Fujita T; Shoji S
    J Neurol Sci; 1997 Aug; 149(2):151-6. PubMed ID: 9171323
    [TBL] [Abstract][Full Text] [Related]  

  • 70. In situ identification of neuronal nitric oxide synthase (NOS-I) mRNA in mouse and rat skeletal muscle.
    Lück G; Oberbäumer I; Blottner D
    Neurosci Lett; 1998 Apr; 246(2):77-80. PubMed ID: 9627184
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Nitric oxide synthase in human skeletal muscles related to defined fibre types.
    Punkt K; Fritzsche M; Stockmar C; Hepp P; Josten C; Wellner M; Schering S; Buchwalow IB
    Histochem Cell Biol; 2006 May; 125(5):567-73. PubMed ID: 16292657
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Nitric oxide synthase and cyclic GMP-dependent protein kinase concentrated at the neuromuscular endplate.
    Chao DS; Silvagno F; Xia H; Cornwell TL; Lincoln TM; Bredt DS
    Neuroscience; 1997 Feb; 76(3):665-72. PubMed ID: 9135041
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Skeletal muscle fibres show NADPH diaphorase activity associated with mitochondria, the sarcoplasmic reticulum and the NOS-1-containing sarcolemma.
    Planitzer G; Baum O; Gossrau R
    Histochem J; 2000 May; 32(5):303-12. PubMed ID: 10939518
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Caveolin-3 deficiency decreases the gene expression level of osteopontin in mdx mouse skeletal muscle.
    Hagiwara Y; Fujita M; Imamura M; Noguchi S; Sasaoka T
    Acta Myol; 2006 Oct; 25(2):53-61. PubMed ID: 18593005
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Physiology of nitric oxide in skeletal muscle.
    Stamler JS; Meissner G
    Physiol Rev; 2001 Jan; 81(1):209-237. PubMed ID: 11152758
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Sarcolemmal neuronal nitric oxide synthase defect in limb-girdle muscular dystrophy: an adverse modulating factor in the disease course?
    Fanin M; Tasca E; Nascimbeni AC; Angelini C
    J Neuropathol Exp Neurol; 2009 Apr; 68(4):383-90. PubMed ID: 19287313
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Caveolae and caveolin-3 in muscular dystrophy.
    Galbiati F; Razani B; Lisanti MP
    Trends Mol Med; 2001 Oct; 7(10):435-41. PubMed ID: 11597517
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A Role for Caveolin-3 in the Pathogenesis of Muscular Dystrophies.
    Pradhan BS; Prószyński TJ
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33228026
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Caveolin-3 associates with developing T-tubules during muscle differentiation.
    Parton RG; Way M; Zorzi N; Stang E
    J Cell Biol; 1997 Jan; 136(1):137-54. PubMed ID: 9008709
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Intracellular localization of dysferlin and its association with the dihydropyridine receptor.
    Ampong BN; Imamura M; Matsumiya T; Yoshida M; Takeda S
    Acta Myol; 2005 Oct; 24(2):134-44. PubMed ID: 16550931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.