BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 9543014)

  • 41. Rare Robertsonian translocations and meiotic behaviour: sperm FISH analysis of t(13;15) and t(14;15) translocations: a case report.
    Moradkhani K; Puechberty J; Bhatt S; Lespinasse J; Vago P; Lefort G; Sarda P; Hamamah S; Pellestor F
    Hum Reprod; 2006 Dec; 21(12):3193-8. PubMed ID: 16917122
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Relevance of histone acetylation and replication timing for deposition of centromeric histone CENP-A.
    Ouspenski II; Van Hooser AA; Brinkley BR
    Exp Cell Res; 2003 May; 285(2):175-88. PubMed ID: 12706113
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dicentric chromosomes: unique models to study centromere function and inactivation.
    Stimpson KM; Matheny JE; Sullivan BA
    Chromosome Res; 2012 Jul; 20(5):595-605. PubMed ID: 22801777
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mislocalization of centromeric histone H3 variant CENP-A contributes to chromosomal instability (CIN) in human cells.
    Shrestha RL; Ahn GS; Staples MI; Sathyan KM; Karpova TS; Foltz DR; Basrai MA
    Oncotarget; 2017 Jul; 8(29):46781-46800. PubMed ID: 28596481
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Correlation between fluorescence in-situ hybridization analyses and in-vitro development to blastocyst stage of embryos from Robertsonian translocation (13;14) carriers.
    Emiliani S; Gonzalez-Merino E; Van Den Bergh M; Delneste D; Englert Y; Abramowicz M
    Hum Reprod; 2002 Nov; 17(11):2957-62. PubMed ID: 12407056
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inactivation of a centromere during the formation of a translocation in maize.
    Gao Z; Fu S; Dong Q; Han F; Birchler JA
    Chromosome Res; 2011 Aug; 19(6):755-61. PubMed ID: 21947957
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure and inheritance of some heterozygous Robertsonian translocation in man.
    Daniel A; Lam-Po-Tang PR
    J Med Genet; 1976 Oct; 13(5):381-8. PubMed ID: 1003449
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Narrowing the localization of the region breakpoint in most frequent Robertsonian translocations.
    Jarmuz-Szymczak M; Janiszewska J; Szyfter K; Shaffer LG
    Chromosome Res; 2014 Dec; 22(4):517-32. PubMed ID: 25179263
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis using fish of sperm and embryos from two carriers of rare rob(13;21) and rob(15;22) robertsonian translocation undergoing PGD.
    Bernicot I; Schneider A; Mace A; Hamamah S; Hedon B; Pellestor F; Anahory T
    Eur J Med Genet; 2012 Apr; 55(4):245-51. PubMed ID: 22406402
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stable dicentric X chromosomes with two functional centromeres.
    Sullivan BA; Willard HF
    Nat Genet; 1998 Nov; 20(3):227-8. PubMed ID: 9806536
    [No Abstract]   [Full Text] [Related]  

  • 51. Localization of anti-CENP antibodies and alphoid sequences in acentric heterochromatin in a breast cancer cell line.
    Vig BK; Latour D; Brown M
    Cancer Genet Cytogenet; 1996 Jun; 88(2):118-25. PubMed ID: 8640719
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genetic and epigenetic regulation of centromeres: a look at HAC formation.
    Ohzeki J; Larionov V; Earnshaw WC; Masumoto H
    Chromosome Res; 2015 Feb; 23(1):87-103. PubMed ID: 25682171
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reproductive risk of the silent carrier of Robertsonian translocation.
    Kolgeci S; Kolgeci J; Azemi M; Shala R; Dakas A; Sopjani M
    Med Arch; 2013; 67(1):56-9. PubMed ID: 23678842
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres.
    Zhang W; Friebe B; Gill BS; Jiang J
    Chromosoma; 2010 Oct; 119(5):553-63. PubMed ID: 20499078
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rapid Birth or Death of Centromeres on Fragmented Chromosomes in Maize.
    Liu Y; Su H; Zhang J; Shi L; Liu Y; Zhang B; Bai H; Liang S; Gao Z; Birchler JA; Han F
    Plant Cell; 2020 Oct; 32(10):3113-3123. PubMed ID: 32817254
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Components of the human spindle checkpoint control mechanism localize specifically to the active centromere on dicentric chromosomes.
    Saffery R; Irvine DV; Griffiths B; Kalitsis P; Choo KH
    Hum Genet; 2000 Oct; 107(4):376-84. PubMed ID: 11129339
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The CENP-A N-tail confers epigenetic stability to centromeres via the CENP-T branch of the CCAN in fission yeast.
    Folco HD; Campbell CS; May KM; Espinoza CA; Oegema K; Hardwick KG; Grewal SIS; Desai A
    Curr Biol; 2015 Feb; 25(3):348-356. PubMed ID: 25619765
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dicentric chromosome formation and epigenetics of centromere formation in plants.
    Fu S; Gao Z; Birchler J; Han F
    J Genet Genomics; 2012 Mar; 39(3):125-30. PubMed ID: 22464471
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Centromere Silencing Mechanisms.
    McNulty SM; Sullivan BA
    Prog Mol Subcell Biol; 2017; 56():233-255. PubMed ID: 28840240
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fluorescence in-situ hybridisation and molecular studies used in the characterisation of a Robertsonian translocation (13q15q) in Prader-Willi syndrome.
    Smith A; Robson L; Neumann A; Mulcahy M; Chabros V; Deng ZM; Woodage T; Trent RJ
    Clin Genet; 1993 Jan; 43(1):5-8. PubMed ID: 8462197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.