These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 954318)

  • 1. Monomer leakage from polymerizing acrylic bone cement. An in vitro study on the influence of speed and duration of mixing, cement volume and surface area.
    Linder LG; Harthon L; Kullberg L
    Clin Orthop Relat Res; 1976 Sep; (119):242-9. PubMed ID: 954318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monomer release from methacrylate bone cements during simulated in vivo polymerization.
    Schoenfeld CM; Conard GJ; Lautenschlager EP
    J Biomed Mater Res; 1979 Jan; 13(1):135-47. PubMed ID: 429381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methyl methacrylate concentrations in tissues adjacent to bone cement.
    Petty W
    J Biomed Mater Res; 1980 Jul; 14(4):427-34. PubMed ID: 7400196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of mixing technique on some properties of PMMA bone cement.
    Eyerer P; Jin R
    J Biomed Mater Res; 1986 Oct; 20(8):1057-94. PubMed ID: 3782171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo versus in vitro polymerization of acrylic bone cement: effect on material properties.
    Bargar WL; Brown SA; Paul HA; Voegli T; Hseih Y; Sharkey N
    J Orthop Res; 1986; 4(1):86-9. PubMed ID: 3950811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical influences on bone cement monomer release.
    Bayne SC; Lautenschlager EP; Greener EH; Meyer PR
    J Biomed Mater Res; 1977 Nov; 11(6):859-69. PubMed ID: 591527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of bead size and polymerization in PMMA bone cement on vancomycin release.
    Shinsako K; Okui Y; Matsuda Y; Kunimasa J; Otsuka M
    Biomed Mater Eng; 2008; 18(6):377-85. PubMed ID: 19197114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A quantitative analysis for determining porosity of pre-compressed and vacuum-mixed bone cement].
    Hahn M; Engelbrecht E; Delling G
    Chirurg; 1990 Jul; 61(7):512-7. PubMed ID: 2394193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of temperature and vacuum mixing on bone cement properties.
    Smeds S; Goertzen D; Ivarsson I
    Clin Orthop Relat Res; 1997 Jan; (334):326-34. PubMed ID: 9005930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-viscosity cement significantly enhances uniformity of cement filling in vertebroplasty: an experimental model and study on cement leakage.
    Baroud G; Crookshank M; Bohner M
    Spine (Phila Pa 1976); 2006 Oct; 31(22):2562-8. PubMed ID: 17047545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Autoradiographic determinations of carbon-14-labeled monomers and residual monomers in the tissues of Wistar rats after implantation of cold-polymerizing polymethyl methacrylate (bone cement) (author's transl)].
    Pinkert R; Johannsen B; Kretzschmar H; Hildebrand P
    Zahn Mund Kieferheilkd Zentralbl; 1979; 67(6):603-13. PubMed ID: 160161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pre-packed vacuum bone cement mixing systems. A further step in reducing methylmethacrylate exposure in surgery.
    Schlegel UJ; Sturm M; Eysel P; Breusch SJ
    Ann Occup Hyg; 2010 Nov; 54(8):955-61. PubMed ID: 20595195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methyl-methacrylate bone cement surface does not promote platelet aggregation or plasma coagulation in vitro.
    Blinc A; Bozic M; Vengust R; Stegnar M
    Thromb Res; 2004; 114(3):179-84. PubMed ID: 15342214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of antibiotic impregnation on the fatigue life of Simplex P and Palacos R acrylic bone cements, with and without centrifugation.
    Davies JP; O'Connor DO; Burke DW; Harris WH
    J Biomed Mater Res; 1989 Apr; 23(4):379-97. PubMed ID: 2708414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Modification of the mechanical properties of bone cements by additives and cement aging in vitro].
    Nietert M; Weber U
    Aktuelle Probl Chir Orthop; 1987; 31():45-50. PubMed ID: 2888402
    [No Abstract]   [Full Text] [Related]  

  • 16. Structural weakening of layered acrylic bone cement.
    Black JD; Greenwald AS
    Clin Orthop Relat Res; 1982; (171):94-6. PubMed ID: 7140095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Histamine release and cardiovascular reactions to implantation of bone cement during total hip replacement].
    Tryba M; Linde I; Voshage G; Zenz M
    Anaesthesist; 1991 Jan; 40(1):25-32. PubMed ID: 1706562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural degradation of acrylic bone cements due to in vivo and simulated aging.
    Hughes KF; Ries MD; Pruitt LA
    J Biomed Mater Res A; 2003 May; 65(2):126-35. PubMed ID: 12734804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The temperature problem at the bone-acrylic cement interface of the total hip replacement.
    DiPisa JA; Sih GS; Berman AT
    Clin Orthop Relat Res; 1976; (121):95-8. PubMed ID: 991524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variations in the density of bone cement after centrifugation.
    Skinner HB; Murray WR
    Clin Orthop Relat Res; 1986 Jun; (207):263-9. PubMed ID: 3720095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.