BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 9543250)

  • 21. A study of the uptake of glutamate, gamma-aminobutyric acid (GABA), glycine and beta-alanine in synaptic brain vesicles from fish and avians.
    Roseth S; Fonnum F
    Neurosci Lett; 1995 Jan; 183(1-2):62-6. PubMed ID: 7746489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of free fatty acids on GABAA receptor ligand binding.
    Koenig JA; Martin IL
    Biochem Pharmacol; 1992 Jul; 44(1):11-5. PubMed ID: 1321625
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chloride-dependent inhibition of vesicular glutamate uptake by alpha-keto acids accumulated in maple syrup urine disease.
    Reis M; Farage M; Wolosker H
    Biochim Biophys Acta; 2000 Jul; 1475(2):114-8. PubMed ID: 10832024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Free, long-chain, polyunsaturated fatty acids reduce membrane electrical excitability in neonatal rat cardiac myocytes.
    Kang JX; Xiao YF; Leaf A
    Proc Natl Acad Sci U S A; 1995 Apr; 92(9):3997-4001. PubMed ID: 7732020
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles.
    Farsi Z; Preobraschenski J; van den Bogaart G; Riedel D; Jahn R; Woehler A
    Science; 2016 Feb; 351(6276):981-4. PubMed ID: 26912364
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transport of gamma-aminobutyrate and L-glutamate into synaptic vesicles. Effect of different inhibitors on the vesicular uptake of neurotransmitters and on the Mg2(+)-ATPase.
    Fykse EM; Fonnum F
    Biochem J; 1991 Jun; 276 ( Pt 2)(Pt 2):363-7. PubMed ID: 1675566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The ontogeny of the uptake systems for glutamate, GABA, and glycine in synaptic vesicles isolated from rat brain.
    Christensen H; Fonnum F
    Neurochem Res; 1992 May; 17(5):457-62. PubMed ID: 1356244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unique pH dynamics in GABAergic synaptic vesicles illuminates the mechanism and kinetics of GABA loading.
    Egashira Y; Takase M; Watanabe S; Ishida J; Fukamizu A; Kaneko R; Yanagawa Y; Takamori S
    Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10702-7. PubMed ID: 27601664
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Action of long-chain fatty acids on protein kinase C activity: comparison of omega-6 and omega-3 fatty acids.
    Holian O; Nelson R
    Anticancer Res; 1992; 12(3):975-80. PubMed ID: 1352441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of membrane transport by free fatty acids: inhibition of synaptosomal sodium-dependent amino acid uptake.
    Rhoads DE; Ockner RK; Peterson NA; Raghupathy E
    Biochemistry; 1983 Apr; 22(8):1965-70. PubMed ID: 6849898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effectiveness of extracellular lactate/pyruvate for sustaining synaptic vesicle proton gradient generation and vesicular accumulation of GABA.
    Tarasenko AS; Linetska MV; Storchak LG; Himmelreich NH
    J Neurochem; 2006 Nov; 99(3):787-96. PubMed ID: 16836653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arachidonic acid inhibits uptake of glutamate and glutamine but not of GABA in cultured cerebellar granule cells.
    Yu AC; Chan PH; Fishman RA
    J Neurosci Res; 1987; 17(4):424-7. PubMed ID: 2887664
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conductive Na+ transport in fetal lung alveolar apical membrane vesicles is regulated by fatty acids and G proteins.
    Fyfe GK; Kemp PJ; Olver RE
    Biochim Biophys Acta; 1997 Jan; 1355(1):33-42. PubMed ID: 9030199
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bilirubin inhibits transport of neurotransmitters in synaptic vesicles.
    Roseth S; Hansen TW; Fonnum F; Walaas SI
    Pediatr Res; 1998 Sep; 44(3):312-6. PubMed ID: 9727706
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional reconstitution of the gamma-aminobutyric acid transporter from synaptic vesicles using artificial ion gradients.
    Hell JW; Edelmann L; Hartinger J; Jahn R
    Biochemistry; 1991 Dec; 30(51):11795-800. PubMed ID: 1684290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glutamate uptake into synaptic vesicles: competitive inhibition by bromocriptine.
    Carlson MD; Kish PE; Ueda T
    J Neurochem; 1989 Dec; 53(6):1889-94. PubMed ID: 2809599
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Guanine derivatives modulate L-glutamate uptake into rat brain synaptic vesicles.
    Tasca CI; Santos TG; Tavares RG; Battastini AM; Rocha JB; Souza DO
    Neurochem Int; 2004 May; 44(6):423-31. PubMed ID: 14687607
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characteristics and specificity of the inhibition of liver glucose-6-phosphatase by arachidonic acid. Lesser inhibitability of the enzyme of diabetic rats.
    Mithieux G; Bordeto JC; Minassian C; Ajzannay A; Mercier I; Riou JP
    Eur J Biochem; 1993 Apr; 213(1):461-6. PubMed ID: 8386629
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Arachidonic acid activation of a new family of K+ channels in cultured rat neuronal cells.
    Kim D; Sladek CD; Aguado-Velasco C; Mathiasen JR
    J Physiol; 1995 May; 484 ( Pt 3)(Pt 3):643-60. PubMed ID: 7623282
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimulatory effect of arachidonic acid on the release of GABA in matrix-enriched areas from the rat striatum.
    Chéramy A; Artaud F; Godeheu G; L'hirondel M; Glowinski J
    Brain Res; 1996 Dec; 742(1-2):185-94. PubMed ID: 9117394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.