These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 9543358)

  • 1. Cytokines in exertion-induced skeletal muscle injury.
    Cannon JG; St Pierre BA
    Mol Cell Biochem; 1998 Feb; 179(1-2):159-67. PubMed ID: 9543358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HORSE SPECIES SYMPOSIUM: The aging horse: Effects of inflammation on muscle satellite cells.
    Reed SA; LaVigne EK; Jones AK; Patterson DF; Schauer AL
    J Anim Sci; 2015 Mar; 93(3):862-70. PubMed ID: 25367519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The inflammatory response to skeletal muscle injury: illuminating complexities.
    Smith C; Kruger MJ; Smith RM; Myburgh KH
    Sports Med; 2008; 38(11):947-69. PubMed ID: 18937524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular responses in exertion-induced skeletal muscle injury.
    Stauber WT; Smith CA
    Mol Cell Biochem; 1998 Feb; 179(1-2):189-96. PubMed ID: 9543360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytokine expression and secretion by skeletal muscle cells: regulatory mechanisms and exercise effects.
    Peake JM; Della Gatta P; Suzuki K; Nieman DC
    Exerc Immunol Rev; 2015; 21():8-25. PubMed ID: 25826432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Satellite cell proliferation and the expression of myogenin and desmin in regenerating skeletal muscle: evidence for two different populations of satellite cells.
    Rantanen J; Hurme T; Lukka R; Heino J; Kalimo H
    Lab Invest; 1995 Mar; 72(3):341-7. PubMed ID: 7898053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of Heme Oxygenase-1 Induces Inflammatory Reaction and Proliferation of Muscle Satellite Cells after Cardiotoxin-Induced Skeletal Muscle Injury.
    Kozakowska M; Pietraszek-Gremplewicz K; Ciesla M; Seczynska M; Bronisz-Budzynska I; Podkalicka P; Bukowska-Strakova K; Loboda A; Jozkowicz A; Dulak J
    Am J Pathol; 2018 Feb; 188(2):491-506. PubMed ID: 29169990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time course of changes in markers of myogenesis in overloaded rat skeletal muscles.
    Adams GR; Haddad F; Baldwin KM
    J Appl Physiol (1985); 1999 Nov; 87(5):1705-12. PubMed ID: 10562612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What mechanisms contribute to the strength loss that occurs during and in the recovery from skeletal muscle injury?
    Warren GL; Ingalls CP; Lowe DA; Armstrong RB
    J Orthop Sports Phys Ther; 2002 Feb; 32(2):58-64. PubMed ID: 11838581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MMP-14 in skeletal muscle repair.
    Snyman C; Niesler CU
    J Muscle Res Cell Motil; 2015 Jun; 36(3):215-25. PubMed ID: 26025393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor necrosis factor-alpha (TNF-alpha) stimulates chemotactic response in mouse myogenic cells.
    Torrente Y; El Fahime E; Caron NJ; Del Bo R; Belicchi M; Pisati F; Tremblay JP; Bresolin N
    Cell Transplant; 2003; 12(1):91-100. PubMed ID: 12693669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential gene expression in the rat soleus muscle during early work overload-induced hypertrophy.
    Carson JA; Nettleton D; Reecy JM
    FASEB J; 2002 Feb; 16(2):207-9. PubMed ID: 11744623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise?
    Paulsen G; Mikkelsen UR; Raastad T; Peake JM
    Exerc Immunol Rev; 2012; 18():42-97. PubMed ID: 22876722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TWEAK, via its receptor Fn14, is a novel regulator of mesenchymal progenitor cells and skeletal muscle regeneration.
    Girgenrath M; Weng S; Kostek CA; Browning B; Wang M; Brown SA; Winkles JA; Michaelson JS; Allaire N; Schneider P; Scott ML; Hsu YM; Yagita H; Flavell RA; Miller JB; Burkly LC; Zheng TS
    EMBO J; 2006 Dec; 25(24):5826-39. PubMed ID: 17124496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle metabolism and control of capillary blood flow: insulin and exercise.
    Rattigan S; Bradley EA; Richards SM; Clark MG
    Essays Biochem; 2006; 42():133-44. PubMed ID: 17144885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding cytokines. Part I: Physiology and mechanism of action.
    Corwin EJ
    Biol Res Nurs; 2000 Jul; 2(1):30-40. PubMed ID: 11232509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exercise, skeletal muscle and inflammation: ARE-binding proteins as key regulators in inflammatory and adaptive networks.
    Beiter T; Hoene M; Prenzler F; Mooren FC; Steinacker JM; Weigert C; Nieß AM; Munz B
    Exerc Immunol Rev; 2015; 21():42-57. PubMed ID: 25826388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exercise-enhanced satellite cell proliferation and new myonuclear accretion in rat skeletal muscle.
    Smith HK; Maxwell L; Rodgers CD; McKee NH; Plyley MJ
    J Appl Physiol (1985); 2001 Apr; 90(4):1407-14. PubMed ID: 11247941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled delivery of SDF-1α and IGF-1: CXCR4(+) cell recruitment and functional skeletal muscle recovery.
    Rybalko VY; Pham CB; Hsieh PL; Hammers DW; Merscham-Banda M; Suggs LJ; Farrar RP
    Biomater Sci; 2015 Nov; 3(11):1475-86. PubMed ID: 26247892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytokines and cell growth control.
    Goldring MB; Goldring SR
    Crit Rev Eukaryot Gene Expr; 1991; 1(4):301-26. PubMed ID: 1802112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.