These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 9543360)

  • 1. Cellular responses in exertion-induced skeletal muscle injury.
    Stauber WT; Smith CA
    Mol Cell Biochem; 1998 Feb; 179(1-2):189-96. PubMed ID: 9543360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Eccentric exercise prior to hindlimb unloading attenuated reloading muscle damage in rats.
    Prisby RD; Nelson AG; Latsch E
    Aviat Space Environ Med; 2004 Nov; 75(11):941-6. PubMed ID: 15558992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overload-induced androgen receptor expression in the aged rat hindlimb receiving nandrolone decanoate.
    Lee WJ; McClung J; Hand GA; Carson JA
    J Appl Physiol (1985); 2003 Mar; 94(3):1153-61. PubMed ID: 12571141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exercise-enhanced satellite cell proliferation and new myonuclear accretion in rat skeletal muscle.
    Smith HK; Maxwell L; Rodgers CD; McKee NH; Plyley MJ
    J Appl Physiol (1985); 2001 Apr; 90(4):1407-14. PubMed ID: 11247941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hindlimb suspension reduces muscle regeneration.
    Mozdziak PE; Truong Q; Macius A; Schultz E
    Eur J Appl Physiol Occup Physiol; 1998 Jul; 78(2):136-40. PubMed ID: 9694312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactate uptake by skeletal muscle sarcolemmal vesicles decreases after 4 wk of hindlimb unweighting in rats.
    Dubouchaud H; Granier P; Mercier J; Le Peuch C; Prefaut C
    J Appl Physiol (1985); 1996 Feb; 80(2):416-21. PubMed ID: 8929578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hindlimb muscle atrophy occurs from peripheral nerve damage in a rat neuropathic pain model.
    Choe MA; Kim KH; An GJ; Lee KS; Heitkemper M
    Biol Res Nurs; 2011 Jan; 13(1):44-54. PubMed ID: 21199814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytokines in exertion-induced skeletal muscle injury.
    Cannon JG; St Pierre BA
    Mol Cell Biochem; 1998 Feb; 179(1-2):159-67. PubMed ID: 9543358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of skeletal muscle lipoprotein lipase activity during physical inactivity: a molecular reason to maintain daily low-intensity activity.
    Bey L; Hamilton MT
    J Physiol; 2003 Sep; 551(Pt 2):673-82. PubMed ID: 12815182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control and quantitation of voluntary weight-lifting performance of rats.
    Wirth O; Gregory EW; Cutlip RG; Miller GR
    J Appl Physiol (1985); 2003 Jul; 95(1):402-12. PubMed ID: 12665538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free mobilization and low- to high-intensity exercise in immobilization-induced muscle atrophy.
    Kannus P; Jozsa L; Järvinen TL; Kvist M; Vieno T; Järvinen TA; Natri A; Järvinen M
    J Appl Physiol (1985); 1998 Apr; 84(4):1418-24. PubMed ID: 9516212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of load carrying on metabolic cost and hindlimb muscle dynamics in guinea fowl (Numida meleagris).
    McGowan CP; Duarte HA; Main JB; Biewener AA
    J Appl Physiol (1985); 2006 Oct; 101(4):1060-9. PubMed ID: 16809624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo measurement of hindlimb neuromuscular function in mice.
    Stodieck LS; Greybeck BJ; Cannon CM; Hanson AM; Young MH; Simske SJ; Ferguson VL
    Muscle Nerve; 2012 Apr; 45(4):536-43. PubMed ID: 22431087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The local effects of tetanus toxin on the electron microscopic structure of skeletal muscle fibres of the mouse.
    Duchen LW
    J Neurol Sci; 1973 Jun; 19(2):169-77. PubMed ID: 4712931
    [No Abstract]   [Full Text] [Related]  

  • 15. Skeletal muscle fibrosis: an overview.
    Mahdy MAA
    Cell Tissue Res; 2019 Mar; 375(3):575-588. PubMed ID: 30421315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential gene expression in the rat soleus muscle during early work overload-induced hypertrophy.
    Carson JA; Nettleton D; Reecy JM
    FASEB J; 2002 Feb; 16(2):207-9. PubMed ID: 11744623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The expression patterns of Pax7 in satellite cells during overload-induced rat adult skeletal muscle hypertrophy.
    Ishido M; Uda M; Kasuga N; Masuhara M
    Acta Physiol (Oxf); 2009 Apr; 195(4):459-69. PubMed ID: 18808442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contractile and cellular remodeling in rabbit skeletal muscle after cyclic eccentric contractions.
    Lieber RL; Schmitz MC; Mishra DK; Fridén J
    J Appl Physiol (1985); 1994 Oct; 77(4):1926-34. PubMed ID: 7836220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetanus toxin preserves skeletal muscle contractile force and size during limb immobilization.
    Matthews CC; Lovering RM; Bowen TG; Fishman PS
    Muscle Nerve; 2014 Nov; 50(5):759-66. PubMed ID: 24590678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can Cytoprotective Cobalt Protoporphyrin Protect Skeletal Muscle and Muscle-derived Stem Cells From Ischemic Injury?
    Wilson HM; Welikson RE; Luo J; Kean TJ; Cao B; Dennis JE; Allen MD
    Clin Orthop Relat Res; 2015 Sep; 473(9):2908-19. PubMed ID: 26070773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.