These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 954358)

  • 1. The absorption of sugars from the human buccal cavity.
    Manning AS; Evered DF
    Clin Sci Mol Med; 1976 Aug; 51(2):127-32. PubMed ID: 954358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake of monosaccharides by guinea-pig cerebral-cortex slices.
    Joanny P; Corriol J; Hillman H
    Biochem J; 1969 Apr; 112(3):367-71. PubMed ID: 5801307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic constants for intestinal transport of four monosaccharides determined under conditions of variable effective resistance of the unstirred water layer.
    Thomson AB
    J Membr Biol; 1979 Oct; 50(2):141-63. PubMed ID: 501734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of different dietary sugars as inducers of intestinal sugar transporters.
    Solberg DH; Diamond JM
    Am J Physiol; 1987 Apr; 252(4 Pt 1):G574-84. PubMed ID: 3565573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of sodium, mannitol, and magnesium on glucose, galactose, 3-O-methylglucose, and fructose absorption in the human ileum.
    Bieberdorf FA; Morawski S; Fordtran JS
    Gastroenterology; 1975 Jan; 68(1):58-66. PubMed ID: 1116666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The "dimeriser" hypothesis for sugar permeation through red cell membrane: reinvestigation of original evidence.
    LeFevre PG
    Biochim Biophys Acta; 1966 Jul; 120(3):395-405. PubMed ID: 5966541
    [No Abstract]   [Full Text] [Related]  

  • 7. Active transport of sugars by the intestine of snail (Cryptomphalus hortensis Müller).
    Barber A; Jordana R; Ponz F
    Rev Esp Fisiol; 1975 Jun; 31(2):119-24. PubMed ID: 1162166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of monosaccharides in kidney-cortex cells.
    Kleinzeller A; Kolínská J; Benes I
    Biochem J; 1967 Sep; 104(3):852-60. PubMed ID: 6049927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of dietary-restricted rat intestine for active transport studies.
    Neale RJ; Wiseman G
    J Physiol; 1969 Nov; 205(1):159-78. PubMed ID: 5347715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monosaccharide transport systems in the yeast Rhodotorula glutinis.
    Janda S; Kotyk A; Tauchová R
    Arch Microbiol; 1976 Dec; 111(1-2):151-4. PubMed ID: 13756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competitive kinetics of sugar active transport in snail intestine.
    Barber A; Jordana R; Ponz F
    Rev Esp Fisiol; 1979 Jun; 35(2):243-8. PubMed ID: 482723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of sucrose feeding on the intestinal transport of sugars in two strains of rats.
    Reiser S; Michaelis O IV; Putney J; Hallfrisch J
    J Nutr; 1975 Jul; 105(7):894-905. PubMed ID: 1138034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absorption of vitamin C from the human buccal cavity.
    Sadoogh-Abasian F; Evered DF
    Br J Nutr; 1979 Jul; 42(1):15-20. PubMed ID: 486391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Sodium influx and intracellular ion concentrations in relation to monosaccharide transport in the intestinal mucosa].
    Remke H; Luppa D; Müller F
    Acta Biol Med Ger; 1972; 29(4):631-42. PubMed ID: 4265834
    [No Abstract]   [Full Text] [Related]  

  • 15. Further studies on the mechanism of uptake of D-glucose by Tetrahymena pyriformis GL.
    Aomine M
    Comp Biochem Physiol A Comp Physiol; 1976; 55(2a):159-63. PubMed ID: 7414
    [No Abstract]   [Full Text] [Related]  

  • 16. Intestinal transport of sugars in a lizard during hibernation and activity.
    Latif SA; Zain BK; Zain-ul-Abedin M
    Comp Biochem Physiol; 1967 Oct; 23(1):121-8. PubMed ID: 6075154
    [No Abstract]   [Full Text] [Related]  

  • 17. Evidence for carrier-mediated uptake of sugars at the serosal side of lamb colon mucosa.
    Scharrer E; Amann B
    Pflugers Arch; 1980 Apr; 384(3):279-82. PubMed ID: 7191090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Na+-independent, phloretin-sensitive monosaccharide transport system in isolated intestinal epithelial cells.
    Kimmich GA; Randles J
    J Membr Biol; 1975 Aug; 23(1):57-76. PubMed ID: 1165580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. THE SEPARATION OF SIMPLE SUGARS BY CELLULOSE THIN-LAYER CHROMATOGRAPHY.
    VOMHOF DW; TUCKER TC
    J Chromatogr; 1965 Feb; 17():300-6. PubMed ID: 14304214
    [No Abstract]   [Full Text] [Related]  

  • 20. Structural requirements for active intestinal transport. The nature of the carrier-sugar bonding at C-2 and the ring oxygen of the sugar.
    Barnett JE; Ralph A; Munday KA
    Biochem J; 1970 Aug; 118(5):843-50. PubMed ID: 5476727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.