These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 9544452)
1. Specific interaction of food proteins with apical membranes of the human intestinal cell lines Caco-2 and T84. Bolte G; Wolburg H; Beuermann K; Stocker S; Stern M Clin Chim Acta; 1998 Feb; 270(2):151-67. PubMed ID: 9544452 [TBL] [Abstract][Full Text] [Related]
2. Dot blot chemiluminescence assay for studying food protein binding to small intestinal brush border membranes in vitro. Bolte G; Knauss M; Metzdorf I; Stern M J Biochem Biophys Methods; 1997 Jun; 34(3):189-203. PubMed ID: 9314097 [TBL] [Abstract][Full Text] [Related]
3. Postnatal maturation of rat small intestinal brush border membranes correlates with increase in food protein binding capacity. Bolte G; Knauss M; Metzdorf I; Stern M Dig Dis Sci; 1998 Jan; 43(1):148-55. PubMed ID: 9508516 [TBL] [Abstract][Full Text] [Related]
4. Enhanced peptide-binding capacities of small intestinal brush border membranes in celiac disease. Bolte G; Seilmeier W; Wieser H; Holm K; Beuermann K; Newport B; Stern M Pediatr Res; 1999 Dec; 46(6):666-70. PubMed ID: 10590021 [TBL] [Abstract][Full Text] [Related]
5. T84 monolayers are superior to Caco-2 as a model system of colonocytes. Devriese S; Van den Bossche L; Van Welden S; Holvoet T; Pinheiro I; Hindryckx P; De Vos M; Laukens D Histochem Cell Biol; 2017 Jul; 148(1):85-93. PubMed ID: 28265783 [TBL] [Abstract][Full Text] [Related]
6. Uptake of label-free graphene oxide by Caco-2 cells is dependent on the cell differentiation status. Kucki M; Diener L; Bohmer N; Hirsch C; Krug HF; Palermo V; Wick P J Nanobiotechnology; 2017 Jun; 15(1):46. PubMed ID: 28637475 [TBL] [Abstract][Full Text] [Related]
7. Immunohistological evidence, obtained with monoclonal antibodies, of small intestinal brush border hydrolases in human colon cancers and foetal colons. Zweibaum A; Hauri HP; Sterchi E; Chantret I; Haffen K; Bamat J; Sordat B Int J Cancer; 1984 Nov; 34(5):591-8. PubMed ID: 6389373 [TBL] [Abstract][Full Text] [Related]
8. Basal nutrition promotes human intestinal epithelial (Caco-2) proliferation, brush border enzyme activity, and motility. Perdikis DA; Basson MD Crit Care Med; 1997 Jan; 25(1):159-65. PubMed ID: 8989193 [TBL] [Abstract][Full Text] [Related]
9. The dual role of annexin II in targeting of brush border proteins and in intestinal cell polarity. Hein Z; Schmidt S; Zimmer KP; Naim HY Differentiation; 2011 Apr; 81(4):243-52. PubMed ID: 21330046 [TBL] [Abstract][Full Text] [Related]
10. Functional Comparison of Human Colonic Carcinoma Cell Lines and Primary Small Intestinal Epithelial Cells for Investigations of Intestinal Drug Permeability and First-Pass Metabolism. Yamaura Y; Chapron BD; Wang Z; Himmelfarb J; Thummel KE Drug Metab Dispos; 2016 Mar; 44(3):329-35. PubMed ID: 26700954 [TBL] [Abstract][Full Text] [Related]
11. Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells: a survey of twenty cell lines. Chantret I; Barbat A; Dussaulx E; Brattain MG; Zweibaum A Cancer Res; 1988 Apr; 48(7):1936-42. PubMed ID: 3349466 [TBL] [Abstract][Full Text] [Related]
12. Two stages of enteropathogenic Escherichia coli intestinal pathogenicity are up and down-regulated by the epithelial cell differentiation. Gabastou JM; Kernéis S; Bernet-Camard MF; Barbat A; Coconnier MH; Kaper JB; Servin AL Differentiation; 1995 Sep; 59(2):127-34. PubMed ID: 8522069 [TBL] [Abstract][Full Text] [Related]
13. Interactions among secretory immunoglobulin A, CD71, and transglutaminase-2 affect permeability of intestinal epithelial cells to gliadin peptides. Lebreton C; Ménard S; Abed J; Moura IC; Coppo R; Dugave C; Monteiro RC; Fricot A; Traore MG; Griffin M; Cellier C; Malamut G; Cerf-Bensussan N; Heyman M Gastroenterology; 2012 Sep; 143(3):698-707.e4. PubMed ID: 22750506 [TBL] [Abstract][Full Text] [Related]
14. Breakdown of gliadin peptides by intestinal brush borders from coeliac patients. Bruce G; Woodley JF; Swan CH Gut; 1984 Sep; 25(9):919-24. PubMed ID: 6381246 [TBL] [Abstract][Full Text] [Related]
15. Effect of gamma-interferon on binding of gliadin and other food peptides to the human intestinal cell line HT-29. Bendix U; Lentz S; Rothschild M; Lehmann I; Osman AA; Mothes T Clin Chim Acta; 1997 May; 261(1):69-80. PubMed ID: 9187506 [TBL] [Abstract][Full Text] [Related]
16. Iron uptake from transferrin and lactoferrin by rat intestinal brush-border membrane vesicles. Kawakami H; Dosako S; Lönnerdal B Am J Physiol; 1990 Apr; 258(4 Pt 1):G535-41. PubMed ID: 2333967 [TBL] [Abstract][Full Text] [Related]
17. Cholesterol esterase bound to intestinal brush border membranes does not accelerate incorporation of micellar cholesterol into absorptive cells. Ikeda I; Mitsui K; Matsuoka R; Hamada T; Imabayashi S; Uchino A; Yamada K; Imaizumi K Biosci Biotechnol Biochem; 2003 Nov; 67(11):2381-7. PubMed ID: 14646197 [TBL] [Abstract][Full Text] [Related]
18. In vitro effect of deoxynivalenol on the differentiation of human colonic cell lines Caco-2 and T84. Kasuga F; Hara-Kudo Y; Saito N; Kumagai S; Sugita-Konishi Y Mycopathologia; 1998; 142(3):161-7. PubMed ID: 10052164 [TBL] [Abstract][Full Text] [Related]
19. Peptic-tryptic digests of gliadin: contaminating trypsin but not pepsin interferes with gastrointestinal protein binding characteristics. Bolte G; Osman A; Mothes T; Stern M Clin Chim Acta; 1996 Mar; 247(1-2):59-70. PubMed ID: 8920227 [TBL] [Abstract][Full Text] [Related]
20. An in vitro model for the analysis of intestinal brush border assembly. I. Ultrastructural analysis of cell contact-induced brush border assembly in Caco-2BBe cells. Peterson MD; Mooseker MS J Cell Sci; 1993 Jun; 105 ( Pt 2)():445-60. PubMed ID: 8408276 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]