These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons. Jackson BS Neural Comput; 2004 Oct; 16(10):2125-95. PubMed ID: 15333210 [TBL] [Abstract][Full Text] [Related]
3. The time-rescaling theorem and its application to neural spike train data analysis. Brown EN; Barbieri R; Ventura V; Kass RE; Frank LM Neural Comput; 2002 Feb; 14(2):325-46. PubMed ID: 11802915 [TBL] [Abstract][Full Text] [Related]
4. A spike-train probability model. Kass RE; Ventura V Neural Comput; 2001 Aug; 13(8):1713-20. PubMed ID: 11506667 [TBL] [Abstract][Full Text] [Related]
5. Motor unit number estimation--a Bayesian approach. Ridall PG; Pettitt AN; Henderson RD; McCombe PA Biometrics; 2006 Dec; 62(4):1235-50. PubMed ID: 17156299 [TBL] [Abstract][Full Text] [Related]
6. Bayesian estimation of stimulus responses in Poisson spike trains. Lehky SR Neural Comput; 2004 Jul; 16(7):1325-43. PubMed ID: 15165392 [TBL] [Abstract][Full Text] [Related]
7. [Meta-analysis of the Italian studies on short-term effects of air pollution]. Biggeri A; Bellini P; Terracini B; Epidemiol Prev; 2001; 25(2 Suppl):1-71. PubMed ID: 11515188 [TBL] [Abstract][Full Text] [Related]
8. Statistical issues in the analysis of neuronal data. Kass RE; Ventura V; Brown EN J Neurophysiol; 2005 Jul; 94(1):8-25. PubMed ID: 15985692 [TBL] [Abstract][Full Text] [Related]
9. Analysis of a stochastic neuronal model with excitatory inputs and state-dependent effects. Di Crescenzo A; Martinucci B Math Biosci; 2007 Oct; 209(2):547-63. PubMed ID: 17467746 [TBL] [Abstract][Full Text] [Related]
10. Gaussian process approach to spiking neurons for inhomogeneous Poisson inputs. Amemori KI; Ishii S Neural Comput; 2001 Dec; 13(12):2763-97. PubMed ID: 11705410 [TBL] [Abstract][Full Text] [Related]
11. Bayesian inference for recurrent events data using time-dependent frailty. Manda SO; Meyer R Stat Med; 2005 Apr; 24(8):1263-74. PubMed ID: 15568192 [TBL] [Abstract][Full Text] [Related]
12. Assessing neuronal coherence with single-unit, multi-unit, and local field potentials. Zeitler M; Fries P; Gielen S Neural Comput; 2006 Sep; 18(9):2256-81. PubMed ID: 16846392 [TBL] [Abstract][Full Text] [Related]
13. Drawing inferences from Fano factor calculations. Eden UT; Kramer MA J Neurosci Methods; 2010 Jun; 190(1):149-52. PubMed ID: 20416340 [TBL] [Abstract][Full Text] [Related]
14. Trial-to-trial variability and its effect on time-varying dependency between two neurons. Ventura V; Cai C; Kass RE J Neurophysiol; 2005 Oct; 94(4):2928-39. PubMed ID: 16160096 [TBL] [Abstract][Full Text] [Related]
15. Bootstrap significance test of synchronous spike events--a case study of oscillatory spike trains. Ito H Stat Med; 2007 Sep; 26(21):3976-96. PubMed ID: 17624912 [TBL] [Abstract][Full Text] [Related]
16. Dependence of neuronal correlations on filter characteristics and marginal spike train statistics. Tetzlaff T; Rotter S; Stark E; Abeles M; Aertsen A; Diesmann M Neural Comput; 2008 Sep; 20(9):2133-84. PubMed ID: 18439140 [TBL] [Abstract][Full Text] [Related]
17. Estimating the temporal interval entropy of neuronal discharge. Reeke GN; Coop AD Neural Comput; 2004 May; 16(5):941-70. PubMed ID: 15070505 [TBL] [Abstract][Full Text] [Related]
18. Testing equality of two functions using BARS. Behseta S; Kass RE Stat Med; 2005 Nov; 24(22):3523-34. PubMed ID: 16059872 [TBL] [Abstract][Full Text] [Related]
19. What can a neuron learn with spike-timing-dependent plasticity? Legenstein R; Naeger C; Maass W Neural Comput; 2005 Nov; 17(11):2337-82. PubMed ID: 16156932 [TBL] [Abstract][Full Text] [Related]
20. A comparison of descriptive models of a single spike train by information-geometric measure. Nakahara H; Amari S; Richmond BJ Neural Comput; 2006 Mar; 18(3):545-68. PubMed ID: 16483407 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]