These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 9544512)
1. Inference for odds ratio regression models with sparse dependent data. Hanfelt JJ; Liang KY Biometrics; 1998 Mar; 54(1):136-47. PubMed ID: 9544512 [TBL] [Abstract][Full Text] [Related]
2. Mantel-Haenszel-type inference for cumulative odds ratios with a stratified ordinal response. Liu IM; Agresti A Biometrics; 1996 Dec; 52(4):1223-34. PubMed ID: 8962452 [TBL] [Abstract][Full Text] [Related]
3. Eight interval estimators of a common rate ratio under stratified Poisson sampling. Lui KJ Stat Med; 2004 Apr; 23(8):1283-96. PubMed ID: 15083483 [TBL] [Abstract][Full Text] [Related]
5. Conditional regression analysis of the exposure-disease odds ratio using known probability-of-exposure values. Satten GA; Kupper LL Biometrics; 1993 Jun; 49(2):429-40. PubMed ID: 8369379 [TBL] [Abstract][Full Text] [Related]
6. Generalized Mantel-Haenszel estimators for K 2 x J tables. Greenland S Biometrics; 1989 Mar; 45(1):183-91. PubMed ID: 2720051 [TBL] [Abstract][Full Text] [Related]
7. Testing for treatment effect in the presence of regression toward the mean. George V; Johnson WD; Shahane A; Nick TG Biometrics; 1997 Mar; 53(1):49-59. PubMed ID: 9147603 [TBL] [Abstract][Full Text] [Related]
8. Estimation of a common effect parameter from sparse follow-up data. Greenland S; Robins JM Biometrics; 1985 Mar; 41(1):55-68. PubMed ID: 4005387 [TBL] [Abstract][Full Text] [Related]
10. Estimating standardized risk differences from odds ratios. Greenland S; Holland P Biometrics; 1991 Mar; 47(1):319-22. PubMed ID: 2049505 [TBL] [Abstract][Full Text] [Related]
11. Estimators and confidence intervals for the marginal odds ratio using logistic regression and propensity score stratification. Stampf S; Graf E; Schmoor C; Schumacher M Stat Med; 2010 Mar; 29(7-8):760-9. PubMed ID: 20213703 [TBL] [Abstract][Full Text] [Related]
12. Interval estimation of the proportion ratio under multiple matching. Lui KJ Stat Med; 2005 Apr; 24(8):1275-85. PubMed ID: 15565736 [TBL] [Abstract][Full Text] [Related]
13. Likelihood-based inference for the genetic relative risk based on affected-sibling-pair marker data. McKnight B; Tierney C; McGorray SP; Day NE Biometrics; 1998 Jun; 54(2):426-43. PubMed ID: 9629637 [TBL] [Abstract][Full Text] [Related]
14. Some covariance models for longitudinal count data with overdispersion. Thall PF; Vail SC Biometrics; 1990 Sep; 46(3):657-71. PubMed ID: 2242408 [TBL] [Abstract][Full Text] [Related]
15. Marginalized models for moderate to long series of longitudinal binary response data. Schildcrout JS; Heagerty PJ Biometrics; 2007 Jun; 63(2):322-31. PubMed ID: 17688485 [TBL] [Abstract][Full Text] [Related]
16. Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. Bradburn MJ; Deeks JJ; Berlin JA; Russell Localio A Stat Med; 2007 Jan; 26(1):53-77. PubMed ID: 16596572 [TBL] [Abstract][Full Text] [Related]
17. Case-control inference of interaction between genetic and nongenetic risk factors under assumptions on their distribution. Shin JH; McNeney B; Graham J Stat Appl Genet Mol Biol; 2007; 6():Article13. PubMed ID: 17474879 [TBL] [Abstract][Full Text] [Related]
18. Methods of estimation in log odds ratio regression models. Breslow NE; Cologne J Biometrics; 1986 Dec; 42(4):949-54. PubMed ID: 3814734 [TBL] [Abstract][Full Text] [Related]
19. Effects of variance-function misspecification in analysis of longitudinal data. Wang YG; Lin X Biometrics; 2005 Jun; 61(2):413-21. PubMed ID: 16011687 [TBL] [Abstract][Full Text] [Related]
20. Longitudinal and repeated cross-sectional cluster-randomization designs using mixed effects regression for binary outcomes: bias and coverage of frequentist and Bayesian methods. Localio AR; Berlin JA; Have TR Stat Med; 2006 Aug; 25(16):2720-36. PubMed ID: 16345043 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]