These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
399 related articles for article (PubMed ID: 9544529)
1. Mixed effects logistic regression models for longitudinal binary response data with informative drop-out. Ten Have TR; Kunselman AR; Pulkstenis EP; Landis JR Biometrics; 1998 Mar; 54(1):367-83. PubMed ID: 9544529 [TBL] [Abstract][Full Text] [Related]
2. A mixed effects model for the analysis of ordinal longitudinal pain data subject to informative drop-out. Pulkstenis E; Ten Have TR; Landis JR Stat Med; 2001 Feb; 20(4):601-22. PubMed ID: 11223903 [TBL] [Abstract][Full Text] [Related]
3. Sensitivity analysis of longitudinal normal data with drop-outs. Minini P; Chavance M Stat Med; 2004 Apr; 23(7):1039-54. PubMed ID: 15057877 [TBL] [Abstract][Full Text] [Related]
4. Marginalized transition models for longitudinal binary data with ignorable and non-ignorable drop-out. Kurland BF; Heagerty PJ Stat Med; 2004 Sep; 23(17):2673-95. PubMed ID: 15316952 [TBL] [Abstract][Full Text] [Related]
5. Random effects probit and logistic regression models for three-level data. Gibbons RD; Hedeker D Biometrics; 1997 Dec; 53(4):1527-37. PubMed ID: 9423267 [TBL] [Abstract][Full Text] [Related]
6. Estimating treatment efficacy over time: a logistic regression model for binary longitudinal outcomes. Choi L; Dominici F; Zeger SL; Ouyang P Stat Med; 2005 Sep; 24(18):2789-805. PubMed ID: 16134133 [TBL] [Abstract][Full Text] [Related]
7. A mixed-effects model for cognitive decline with non-monotone non-response from a two-phase longitudinal study of dementia. Shen C; Gao S Stat Med; 2007 Jan; 26(2):409-25. PubMed ID: 16345034 [TBL] [Abstract][Full Text] [Related]
8. Performance of weighted estimating equations for longitudinal binary data with drop-outs missing at random. Preisser JS; Lohman KK; Rathouz PJ Stat Med; 2002 Oct; 21(20):3035-54. PubMed ID: 12369080 [TBL] [Abstract][Full Text] [Related]
9. Handling drop-out in longitudinal clinical trials: a comparison of the LOCF and MMRM approaches. Lane P Pharm Stat; 2008; 7(2):93-106. PubMed ID: 17351897 [TBL] [Abstract][Full Text] [Related]
10. Quantile regression for longitudinal data using the asymmetric Laplace distribution. Geraci M; Bottai M Biostatistics; 2007 Jan; 8(1):140-54. PubMed ID: 16636139 [TBL] [Abstract][Full Text] [Related]
11. An approximate generalized linear model with random effects for informative missing data. Follmann D; Wu M Biometrics; 1995 Mar; 51(1):151-68. PubMed ID: 7766771 [TBL] [Abstract][Full Text] [Related]
12. Longitudinal and repeated cross-sectional cluster-randomization designs using mixed effects regression for binary outcomes: bias and coverage of frequentist and Bayesian methods. Localio AR; Berlin JA; Have TR Stat Med; 2006 Aug; 25(16):2720-36. PubMed ID: 16345043 [TBL] [Abstract][Full Text] [Related]
13. Semiparametric regression analysis of longitudinal data with informative drop-outs. Lin DY; Ying Z Biostatistics; 2003 Jul; 4(3):385-98. PubMed ID: 12925506 [TBL] [Abstract][Full Text] [Related]
14. Random effects and latent processes approaches for analyzing binary longitudinal data with missingness: a comparison of approaches using opiate clinical trial data. Albert PS; Follmann DA Stat Methods Med Res; 2007 Oct; 16(5):417-39. PubMed ID: 17656452 [TBL] [Abstract][Full Text] [Related]
15. Conditional mixed models adjusting for non-ignorable drop-out with administrative censoring in longitudinal studies. Li J; Schluchter MD Stat Med; 2004 Nov; 23(22):3489-503. PubMed ID: 15505888 [TBL] [Abstract][Full Text] [Related]
16. Intent-to-treat analysis for longitudinal studies with drop-outs. Little R; Yau L Biometrics; 1996 Dec; 52(4):1324-33. PubMed ID: 8962456 [TBL] [Abstract][Full Text] [Related]
17. [Meta-analysis of the Italian studies on short-term effects of air pollution]. Biggeri A; Bellini P; Terracini B; Epidemiol Prev; 2001; 25(2 Suppl):1-71. PubMed ID: 11515188 [TBL] [Abstract][Full Text] [Related]
18. A selection model for longitudinal binary responses subject to non-ignorable attrition. Alfò M; Maruotti A Stat Med; 2009 Aug; 28(19):2435-50. PubMed ID: 19424960 [TBL] [Abstract][Full Text] [Related]
19. Inference using conditional logistic regression with missing covariates. Lipsitz SR; Parzen M; Ewell M Biometrics; 1998 Mar; 54(1):295-303. PubMed ID: 9544523 [TBL] [Abstract][Full Text] [Related]
20. Marginal analysis of incomplete longitudinal binary data: a cautionary note on LOCF imputation. Cook RJ; Zeng L; Yi GY Biometrics; 2004 Sep; 60(3):820-8. PubMed ID: 15339307 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]