These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 9545031)

  • 21. The role of cortical orientation in the control of the direction of ciliary beat in Paramecium.
    Tamm SL; Sonneborn TM; Dippell RV
    J Cell Biol; 1975 Jan; 64(1):98-112. PubMed ID: 45847
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A model of flagellar and ciliary functioning which uses the forces transverse to the axoneme as the regulator of dynein activation.
    Lindemann CB
    Cell Motil Cytoskeleton; 1994; 29(2):141-54. PubMed ID: 7820864
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrodynamic calculations on the movements of cilia and flagella. II. Opalina.
    Blake J
    J Theor Biol; 1975 Jul; 52(1):67-82. PubMed ID: 1152489
    [No Abstract]   [Full Text] [Related]  

  • 24. Passive electrical properties of Paramecium and problems of ciliary coordination.
    Eckert R; Naitoh Y
    J Gen Physiol; 1970 Apr; 55(4):467-83. PubMed ID: 5435781
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reversal response elicited in nonbeating cilia of paramecium by membrane depolarizatin.
    Naitoh Y
    Science; 1966 Nov; 154(3749):660-2. PubMed ID: 5923781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrodynamic flow patterns and synchronization of beating cilia.
    Vilfan A; Jülicher F
    Phys Rev Lett; 2006 Feb; 96(5):058102. PubMed ID: 16486996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The dynein-triggered ciliary motion in embryonic nodes: an exploratory study based on computational models.
    Chen D; Zhong Y; Shinohara K; Nishida T; Hasegawa T; Hamada H
    Biomed Mater Eng; 2014; 24(6):2495-501. PubMed ID: 25226950
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computer simulation of flagellar movement IX. Oscillation and symmetry breaking in a model for short flagella and nodal cilia.
    Brokaw CJ
    Cell Motil Cytoskeleton; 2005 Jan; 60(1):35-47. PubMed ID: 15573415
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Testing the geometric clutch hypothesis.
    Lindemann CB
    Biol Cell; 2004 Dec; 96(9):681-90. PubMed ID: 15567522
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonlinear dynamics of cilia and flagella.
    Hilfinger A; Chattopadhyay AK; Jülicher F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051918. PubMed ID: 19518491
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synchronization, phase locking, and metachronal wave formation in ciliary chains.
    Niedermayer T; Eckhardt B; Lenz P
    Chaos; 2008 Sep; 18(3):037128. PubMed ID: 19045502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulation of ciliary beating by an excitable dynein model: oscillations, quiescence and mechano-sensitivity.
    Murase M
    J Theor Biol; 1990 Sep; 146(2):209-31. PubMed ID: 2147971
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Splitting the ciliary axoneme: implications for a "switch-point" model of dynein arm activity in ciliary motion.
    Satir P; Matsuoka T
    Cell Motil Cytoskeleton; 1989; 14(3):345-58. PubMed ID: 2531043
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calcium regulates independently ciliary beat and cell contraction in Paramecium cells.
    Iwadate Y; Nakaoka Y
    Cell Calcium; 2008 Aug; 44(2):169-79. PubMed ID: 18179819
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ciliary metachronal wave propagation on the compliant surface of Paramecium cells.
    Narematsu N; Quek R; Chiam KH; Iwadate Y
    Cytoskeleton (Hoboken); 2015 Dec; 72(12):633-46. PubMed ID: 26616106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Mathematical modeling of the mechanism of cilia motion: an internal hydrodynamic drive].
    Kotov NV; Miroshnikov VV; Iudin ID
    Biofizika; 1992; 37(2):301-5. PubMed ID: 7578321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the contribution of dynein-like activity to twisting in a three-dimensional sliding filament model.
    Hines M; Blum JJ
    Biophys J; 1985 May; 47(5):705-8. PubMed ID: 3160392
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The respiratory ciliary motion produced by dynein activity alone: A computational model of ciliary ultrastructure.
    Chen D; Ren J; Mei Y; Xu Y
    Technol Health Care; 2015; 23 Suppl 2():S577-86. PubMed ID: 26410526
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Injected cyclic AMP increases ciliary beat frequency in conjunction with membrane hyperpolarization.
    Hennessey T; Machemer H; Nelson DL
    Eur J Cell Biol; 1985 Mar; 36(2):153-6. PubMed ID: 2581782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Symplectic and antiplectic waves in an array of beating cilia attached to a closed body.
    Ghorbani A; Najafi A
    Phys Rev E; 2017 May; 95(5-1):052412. PubMed ID: 28618581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.