These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9545194)

  • 1. Temporal precision of the encoding of motion information by visual interneurons.
    Warzecha AK; Kretzberg J; Egelhaaf M
    Curr Biol; 1998 Mar; 8(7):359-68. PubMed ID: 9545194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic transmission of graded membrane potential changes and spikes between identified visual interneurons.
    Rien D; Kern R; Kurtz R
    Eur J Neurosci; 2011 Sep; 34(5):705-16. PubMed ID: 21819463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane potential fluctuations determine the precision of spike timing and synchronous activity: a model study.
    Kretzberg J; Egelhaaf M; Warzecha AK
    J Comput Neurosci; 2001; 10(1):79-97. PubMed ID: 11316342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic transfer of dynamic motion information between identified neurons in the visual system of the blowfly.
    Warzecha AK; Kurtz R; Egelhaaf M
    Neuroscience; 2003; 119(4):1103-12. PubMed ID: 12831867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural coding of natural stimuli: information at sub-millisecond resolution.
    Nemenman I; Lewen GD; Bialek W; de Ruyter van Steveninck RR
    PLoS Comput Biol; 2008 Mar; 4(3):e1000025. PubMed ID: 18369423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How reliably does a neuron in the visual motion pathway of the fly encode behaviourally relevant information?
    Warzecha AK; Egelhaaf M
    Eur J Neurosci; 1997 Jul; 9(7):1365-74. PubMed ID: 9240394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two classes of visual motion sensitive interneurons differ in direction and velocity dependency of in vivo calcium dynamics.
    Dürr V; Kurtz R; Egelhaaf M
    J Neurobiol; 2001 Mar; 46(4):289-300. PubMed ID: 11180156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reliability of a fly motion-sensitive neuron depends on stimulus parameters.
    Warzecha AK; Kretzberg J; Egelhaaf M
    J Neurosci; 2000 Dec; 20(23):8886-96. PubMed ID: 11102498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. State-dependent performance of optic-flow processing interneurons.
    Longden KD; Krapp HG
    J Neurophysiol; 2009 Dec; 102(6):3606-18. PubMed ID: 19812292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural mechanism underlying complex receptive field properties of motion-sensitive interneurons.
    Haag J; Borst A
    Nat Neurosci; 2004 Jun; 7(6):628-34. PubMed ID: 15133514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural coding with graded membrane potential changes and spikes.
    Kretzberg J; Warzecha AK; Egelhaaf M
    J Comput Neurosci; 2001; 11(2):153-64. PubMed ID: 11717531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precise timing in fly motion vision is mediated by fast components of combined graded and spike signals.
    Beckers U; Egelhaaf M; Kurtz R
    Neuroscience; 2009 May; 160(3):639-50. PubMed ID: 19264111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efferent neurons and suspected interneurons in binocular visual cortex of the awake rabbit: receptive fields and binocular properties.
    Swadlow HA
    J Neurophysiol; 1988 Apr; 59(4):1162-87. PubMed ID: 3373273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of photon noise on the reliability of a motion-sensitive neuron in the fly's visual system.
    Grewe J; Kretzberg J; Warzecha AK; Egelhaaf M
    J Neurosci; 2003 Nov; 23(34):10776-83. PubMed ID: 14645469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust integration of motion information in the fly visual system revealed by single cell photoablation.
    Kalb J; Egelhaaf M; Kurtz R
    J Neurosci; 2006 Jul; 26(30):7898-906. PubMed ID: 16870735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reproducibility and variability in neural spike trains.
    de Ruyter van Steveninck RR; Lewen GD; Strong SP; Koberle R; Bialek W
    Science; 1997 Mar; 275(5307):1805-8. PubMed ID: 9065407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robustness of the tuning of fly visual interneurons to rotatory optic flow.
    Karmeier K; Krapp HG; Egelhaaf M
    J Neurophysiol; 2003 Sep; 90(3):1626-34. PubMed ID: 12736239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corticogeniculate neurons, corticotectal neurons, and suspected interneurons in visual cortex of awake rabbits: receptive-field properties, axonal properties, and effects of EEG arousal.
    Swadlow HA; Weyand TG
    J Neurophysiol; 1987 Apr; 57(4):977-1001. PubMed ID: 3585466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural circuit tuning fly visual neurons to motion of small objects. II. Input organization of inhibitory circuit elements revealed by electrophysiological and optical recording techniques.
    Egelhaaf M; Borst A; Warzecha AK; Flecks S; Wildemann A
    J Neurophysiol; 1993 Feb; 69(2):340-51. PubMed ID: 8459271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of fly visual interneurons during object fixation.
    Kimmerle B; Egelhaaf M
    J Neurosci; 2000 Aug; 20(16):6256-66. PubMed ID: 10934276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.