These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 9545259)
1. Urea transporter UT3 functions as an efficient water channel. Direct evidence for a common water/urea pathway. Yang B; Verkman AS J Biol Chem; 1998 Apr; 273(16):9369-72. PubMed ID: 9545259 [TBL] [Abstract][Full Text] [Related]
2. Water and glycerol permeabilities of aquaporins 1-5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. Yang B; Verkman AS J Biol Chem; 1997 Jun; 272(26):16140-6. PubMed ID: 9195910 [TBL] [Abstract][Full Text] [Related]
3. Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Ishibashi K; Sasaki S; Fushimi K; Uchida S; Kuwahara M; Saito H; Furukawa T; Nakajima K; Yamaguchi Y; Gojobori T Proc Natl Acad Sci U S A; 1994 Jul; 91(14):6269-73. PubMed ID: 7517548 [TBL] [Abstract][Full Text] [Related]
4. Analysis of double knockout mice lacking aquaporin-1 and urea transporter UT-B. Evidence for UT-B-facilitated water transport in erythrocytes. Yang B; Verkman AS J Biol Chem; 2002 Sep; 277(39):36782-6. PubMed ID: 12133842 [TBL] [Abstract][Full Text] [Related]
5. Cloning and characterization of the urea transporter UT3: localization in rat kidney and testis. Tsukaguchi H; Shayakul C; Berger UV; Tokui T; Brown D; Hediger MA J Clin Invest; 1997 Apr; 99(7):1506-15. PubMed ID: 9119994 [TBL] [Abstract][Full Text] [Related]
6. Evidence against a role of mouse, rat, and two cloned human t1alpha isoforms as a water channel or a regulator of aquaporin-type water channels. Ma T; Yang B; Matthay MA; Verkman AS Am J Respir Cell Mol Biol; 1998 Jul; 19(1):143-9. PubMed ID: 9651190 [TBL] [Abstract][Full Text] [Related]
7. Selectivity of the renal collecting duct water channel aquaporin-3. Echevarría M; Windhager EE; Frindt G J Biol Chem; 1996 Oct; 271(41):25079-82. PubMed ID: 8810261 [TBL] [Abstract][Full Text] [Related]
8. Incorporation of proteins into (Xenopus) oocytes by proteoliposome microinjection: functional characterization of a novel aquaporin. Le Cahérec F; Bron P; Verbavatz JM; Garret A; Morel G; Cavalier A; Bonnec G; Thomas D; Gouranton J; Hubert JF J Cell Sci; 1996 Jun; 109 ( Pt 6)():1285-95. PubMed ID: 8799818 [TBL] [Abstract][Full Text] [Related]
9. Very high single channel water permeability of aquaporin-4 in baculovirus-infected insect cells and liposomes reconstituted with purified aquaporin-4. Yang B; van Hoek AN; Verkman AS Biochemistry; 1997 Jun; 36(24):7625-32. PubMed ID: 9200715 [TBL] [Abstract][Full Text] [Related]
10. A method for determining the unitary functional capacity of cloned channels and transporters expressed in Xenopus laevis oocytes. Zampighi GA; Kreman M; Boorer KJ; Loo DD; Bezanilla F; Chandy G; Hall JE; Wright EM J Membr Biol; 1995 Nov; 148(1):65-78. PubMed ID: 8558603 [TBL] [Abstract][Full Text] [Related]
11. Movement of NH₃ through the human urea transporter B: a new gas channel. Geyer RR; Musa-Aziz R; Enkavi G; Mahinthichaichan P; Tajkhorshid E; Boron WF Am J Physiol Renal Physiol; 2013 Jun; 304(12):F1447-57. PubMed ID: 23552862 [TBL] [Abstract][Full Text] [Related]
12. Water and urea permeability properties of Xenopus oocytes: expression of mRNA from toad urinary bladder. Zhang RB; Verkman AS Am J Physiol; 1991 Jan; 260(1 Pt 1):C26-34. PubMed ID: 1987778 [TBL] [Abstract][Full Text] [Related]
13. Mercury-sensitive residues and pore site in AQP3 water channel. Kuwahara M; Gu Y; Ishibashi K; Marumo F; Sasaki S Biochemistry; 1997 Nov; 36(46):13973-8. PubMed ID: 9369468 [TBL] [Abstract][Full Text] [Related]
14. Evidence for a glycerol pathway through aquaporin 1 (CHIP28) channels. Abrami L; Tacnet F; Ripoche P Pflugers Arch; 1995 Jul; 430(3):447-58. PubMed ID: 7491270 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the water transporting properties of MIP and AQP1. Chandy G; Zampighi GA; Kreman M; Hall JE J Membr Biol; 1997 Sep; 159(1):29-39. PubMed ID: 9309208 [TBL] [Abstract][Full Text] [Related]
16. Functional characterization and cell immunolocalization of AQP-CD water channel in kidney collecting duct. Fushimi K; Sasaki S; Yamamoto T; Hayashi M; Furukawa T; Uchida S; Kuwahara M; Ishibashi K; Kawasaki M; Kihara I Am J Physiol; 1994 Oct; 267(4 Pt 2):F573-82. PubMed ID: 7524358 [TBL] [Abstract][Full Text] [Related]
17. Cloning, functional analysis and cell localization of a kidney proximal tubule water transporter homologous to CHIP28. Zhang R; Skach W; Hasegawa H; van Hoek AN; Verkman AS J Cell Biol; 1993 Jan; 120(2):359-69. PubMed ID: 8421053 [TBL] [Abstract][Full Text] [Related]
18. Water channels and urea transporters. Wintour EM Clin Exp Pharmacol Physiol; 1997 Jan; 24(1):1-9. PubMed ID: 9043798 [TBL] [Abstract][Full Text] [Related]
19. Discovery of aquaporins: a breakthrough in research on renal water transport. van Lieburg AF; Knoers NV; Deen PM Pediatr Nephrol; 1995 Apr; 9(2):228-34. PubMed ID: 7540850 [TBL] [Abstract][Full Text] [Related]
20. Distribution of mRNA for the facilitated urea transporter UT3 in the rat nervous system. Berger UV; Tsukaguchi H; Hediger MA Anat Embryol (Berl); 1998 May; 197(5):405-14. PubMed ID: 9623675 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]